
Towards Service Composition Middleware Embedded in Web Browser

Gang Huang1,2, Qi Zhao1,2, Jiyu Huang1,2, Xuanzhe Liu1,2, Teng Teng3, Yong Zhang3, Honggang Yuan3
1Key Laboratory of High Confidence Software Technologies, Ministry of Education, China

2School of Electronics Engineering and Computer Science, Peking University, Beijing, China
3Kingdee Middleware Company Ltd., Shenzhen, China

{huanggang, zhaoqi06, huangjy07, liuxzh}@sei.pku.edu.cn, {tengteng, zhangyong, danielyuan}@apusic.com

Abstract—Due to the rich user experience and Internet-wide
scalability, more and more Web-delivered services are
assembled in web browsers and the resulted service
composition itself is also running in the browsers. Today’s
popular service composition environments embedded in web
browsers mainly focus on the experiences of end-users or
non-professional users. The solutions for other composition
issues, e.g. service access and interaction enablement, are
private and tightly coupled with the user interfaces. In this
paper, we propose a new type of middleware, which is
embedded in web browsers and encapsulates reusable
solutions for common problems to the composition of Web-
delivered services, including a container for component
instances, a set of communication mechanisms for
interactions within the browser, between the browser and
server, between the browser and local resources. Based on
iCM, different service composition environments preferred
by different users can be constructed easily with high quality.
In the evaluation, we implement a prototype of the browser
middleware, called Internetware Client Middleware (iCM),
construct a new service composition environment, called
iMashup, with iCM and compare iMashup with some
popular environments. The evaluation results demonstrates
that iMashup has richer composition capabilities, supports
more types of web browsers, consumes smaller memory and
gains practical scalability. These observations show the
feasibility and effectiveness of the proposed middleware.

Service-composition; middleware; mashup; Internetware

I. INTRODUCTION

Nowadays, many web sites and applications, such as
Google, Amazon and Facebook, expose either data feeds
or more advanced web-delivered services (e.g., SOAP and
RESTful web services). Developers are now assembling
various services to create a large number of composition
applications (e.g., those so-called mashups) to solve all
types of problems [1]. ProgrammableWeb.com is a
mashups statistics and classification web site, as of April
2009, it listed 4,000 mashups (composition applications)
and more than 1200 different web-delivered services.

Composition of web-delivered services is not trivial
and there are some supporting environments for their
development [2][3]. These environments always include
graphic tools for composition design and analysis as well
as runtime frameworks for composition deployment and
operation. The tools can run either in a web browser or as
a standalone program and the frameworks can run at the

client side or the server side. Then, the environments can
be divided into four types, as shown in Table I:

TABLE I WEB-DELIVERED SERVICE COMPOSITION ENVIRONMENTS

 Client-side
Frameworks

Server-side
Frameworks

Browser-
based Tools

Microsoft
Popfly, Intel Mash
Maker, QEDWiki

Yahoo! Pipes,
Sharable Code,
Damia

Standalone
Tools

Adobe Durango,
Proto, Openkapow

ActiveBPEL,
BPEL4J, Bite

In practice, comparing with other types, the

environments running both tools and frameworks in web
browsers, called browser-based composition
environments in this paper, have significant advantages.
First of all, although the web browser initially was
designed as a pure thin client to display web pages, it has
already become much “richer” and offers a set of
powerful built-in and plug-in mechanisms, such as
dynamic HTML and JavaScript engines. The browser is
capable of hosting the whole service composition
environment. Second, the browser-based environments
have all advantages of web applications. For example,
developers are able to use these environments in web
browsers without any downloads, installations and
upgrades. The environment itself and service
compositions have real portability of “write once run
anywhere”. Third, the browser-based environments
distribute the work load of development and service
compositions operation from a central server to every
user’s browser. Hence, they never suffer from the
scalability problems caused by mass users. Last but not
the least, composition of web-delivered services always
requires a lot of fine-gained and user-unperceivable
communications between the tools and frameworks for
rich user experience, e.g. WYSIWYG (What You See Is
What You Get). Locating the tools and frameworks in the
same browser can get better performance and reliability.

User experience is the dominant rationale for browser-
based service composition environments. Since different
environment vendors have different understanding of
users and their experience, they provide very different
environments, e.g. different look-and-feel, different

service components and different composition styles.
Besides these GUI (Graphical User Interface) features,
environment vendors have to handle many common
problems for service composition, including service
access, component management, interaction enablement
and browser compatibility. Poor solutions for these
common problems definitely put negative impacts on user
experience. Since browser-based service composition
environments are just in a very early stage, they pay more
attention to bringing service composition capability to end
users and offering end user-friendly interface. The
solutions for common problems are private to the
environments and tightly coupled with their GUI.
Obviously, it is hard and even impossible for a single
vendor to produce optimal or best-of-the-breed solutions.
But the monolithic and private design and implementation
of each environment prevent vendors from sharing and
collaborating on the private solutions. On the other hand,
building up new environments has to implement these
common solutions again and again. It increases the cost of
improving user experience by new GUI features.

In this paper, we propose a new type of middleware,
which is embedded in the browser and encapsulates the
solutions of common problems in service composition
development and operation. It provides an open way for
producing the optimal solutions in most cases, i.e.
different service composition environments preferred by
different users can be constructed easily in high qualities.
The prototype of the middleware, called Internetware
Client Middleware:
 provides a component model and a container. The

components invoke web-delivered services and
construct user interface (UI). A well-defined
interface provided by the component model ensures
that the components can be used in more than one
composition easily. All components are managed by
the container;

 offers a composition model and enablement
mechanisms. The composition model is event-based,
since the event-based style is well suited to service
composition in the browser [2]. To implement this
composition model, the middleware provides several
mechanisms, including a unified event model, an
light-weight event bus and two types of connectors;

 encapsulates a set of mechanisms for web-delivered
services access. The mechanisms solve the common
problems of interactions between the browser and
web-delivered services. They include the web-
delivered service handler, cache handler, cross-
domain handler, HTTP-push handler and OAuth
authentication handler;

 can be executed in most modern web browsers,
including IE, Firefox, Opera and Safari. The
middleware handles many differences across
browsers, so that developers can achieve the browser
compatibility with little effort.

The middleware exposes all functionalities through a
set of easy-to-use APIs. We implement a browser-based
service composition environment, iMashup 1 , based on
these APIs, and compare it with some other environments.
The comparison and evaluation results demonstrate the
values of this middleware, i.e., better and reusable
solutions for common problems in different environments.

The rest of the paper is organized as follows. Section 2
provides the overview of the browser middleware. Section
3 and Section 4 respectively discuss the implementation
of the component container and the communication
mechanisms. Section 5 presents evaluation results. Finally,
we provide some discussions in Section 6 and conclude
this paper in Section 7.

II. BROWSER MIDDLEWARE OVERVIEW

In this section, we provide a general overview of the
proposed browser middleware, as shown in Figure 1. The
implementation details are elaborated in section 3 and 4.

The browser provides the hosted mechanisms, such as
HTML engine, JavaScript engine and HTTP protocol
handler. Browser plug-ins (e.g. Flash and Google Gear)
offer a number of useful mechanisms not included in the
hosted mechanisms, such as local data storage. All of
these mechanisms form the basis of our middleware.

The browser middleware is built on the top of hosted
and plug-in mechanisms. It is implemented with
JavaScript which is the most used programming language
in web browsers. It is also based on Dojo JavaScript
framework, since the framework enhances JavaScript
language with powerful object-oriented support. Dojo
also handles many differences across browsers, and hence
we can achieve the browser compatibility with less effort
hence.

The container is in charge of component management.
Its responsibility is to manage the definitions and the
instances of component. The container need not consider
the concurrency control of component instances, since the
JavaScript engine in the browser runs in single-thread.

The communication mechanisms assist components
to communicate with other components inside web
browser, web-delivered services on servers and local
resources, because the middleware not only manages the
components but is also in charge of the communication
both inside and outside the browser. Depending on the
different communication types, these mechanisms can be
divided into three parts:
 The intra-browser communication mechanisms

offer some mechanisms to implement an event-based
composition model which makes components
communicate with others in the same web browser.

 The browser-server communication mechanisms
provide the solutions of common problems for
communication between the browser and web-

1 It can be downloaded from http://code.google.com/p/imashup/

delivered services on servers. The mechanisms offer
a series of handlers supporting the common
capabilities for web-delivered services access.

 The browser-local data access mechanisms seek to
provide some mechanisms to assist web applications
to take advantages of local data storage.

The middleware provides a set of Application
Programming Interface (API). Developers can build
service composition applications directly based on these
APIs. The time and effort of development can be saved,
since developers can resolve many common problems by
using the solutions encapsulated in the middleware and
pay more attention to the business logic.

Furthermore, it is also easy to construct service
composition environments with the middleware. In fact,
the composition environments are a particular type of
composition application, which facilitates developers or
non-professional users to create their own applications.
Since the middleware provides most functions an
environment required, the main work of environment
implementation is building GUI.

III. IMPLEMENTATION OF COMPONENT CONTAINER

A. Component Model

When assembling services in the browser, developers
use the data or logic of services and create corresponding
UI. A well-designed component model, which
encapsulates the application logic of service access and
UI, can facilitate reusability and ensures extensibility.

The components in the browser middleware
encapsulate both the application logic and UI. These
components are similar to traditional ones and consist of
the interface and the implementation. Yet, in contrast with
traditional ones, the interface of components comprises
the UI (user interface) and the programming interface.
The programming interface exposes application logic.
The components interact with others through their
programming interface. The UI responds to users’ actions
and invokes the corresponding functions in the
implementation. The component model is shown in
Figure 2.

The implementation of components adopts the Model-
View-Controller pattern. The model implements
application logic by invoking web-delivered services. The
view is a fragment of HTML which is rendered and

Figure 1. The Overview of the Browser Middleware

displayed during component instantiation. The controller
manages the interaction logic between model and view.

Figure 2. Component Model

The programming interface exposes the application
logic of components. It consists of methods and events.
Methods can invoke services and query and modify the
component state. Events notify changes of the component
state and can be published into the event bus. The UI is
implemented by the view part of component. When
developers assemble the components, they can determine
whether the UI of components should be visible or not.

B. Component Management

The size of middleware determines the startup speed of
applications and should be carefully controlled, since all
files of middleware will be downloaded into the browser
when users visit the applications built on top of the
middleware. Hence, instead of downloading all
component definitions at the start, the container
downloads them on demand, i.e. downloads a definition
only when applications use this component. The on
demand definition download is carried out in the
following steps:
 A request to instance creation API is arrived at the

container;
 The container checks whether the definition of

required component is downloaded or not;
 If the definition is already downloaded, the container

creates a new instance;
 If not, the container will first construct a callback

method to create an instance and subscribe the
ComponentDefinitionDownloaded event with this
method;

 And then the container converts the full name (with
namespace) of this component into the path of its
definition on the server and downloads it;

 After downloaded, the
ComponentDefinitionDownloaded event will be
triggered;

 Then the callback method will create a new instance.
Moreover the container will maintain the
downloaded definition for future use.

The container also offers the APIs for component
instance retrieval, modification and deletion. Developers
can manage instances through these APIs.

IV. IMPLEMENTATION OF COMMUNICATION

MECHANISMS

A. Intra-Browser Communication Mechanisms

Our browser middleware provide an event-based
publish-subscribe composition model. The event-based
composition model is well suited to browser-based
composition environments. In web-delivered service
composition, there are two major styles for component
orchestration, flow-based and event-based: the flow-based
style defines the orchestration in sequencing or partial
order among components, while the event-based style
uses publish-subscribe models [2]. The event-based style
is suited to browser-based service composition, due to the
nature of the browser is strongly event-based. The
components in the browser encapsulate a lot of events.
The start, change and finish stage of many user
interactions and asynchronous operations, such as buttons
clicked and Ajax called, are all notified by events. When
developers assemble components, a typical composition
scenario is that a component invokes a function to
respond to an event published by another component.

To implement the event-based composition model, the
intra-browser communication mechanisms offer a unified
event model for all component events and an event bus.

Event Model

The browser has its own DOM (Document Object
Model) event model. Each DOM node includes numerous
events, such as click, mouse-over, and so forth. When an
event is triggered, an event instance will be created and
passed to corresponding callback functions. It should be
noted that many other asynchronous operations exist in
the browser, such as Ajax http requests and timers, which
do not use DOM event model.

To facilitate composition, the intra-browser
communication mechanisms provide a unified event
model for all events of components, regardless of user
interactions or asynchronous operations. The event model
comprises the name of event, the reference of source
instance triggering this event and a hash map containing
event parameters.

Event Bus

The intra-browser communication mechanisms provide
an event bus which supports publish-subscribe event
binding. To guarantee its performance, the event bus is
implemented in a very light-weight manner.

The event bus has some channels which are set by
developers. Each channel is actually a string whose value
is the unique name of the channel. The events of
components can be published to these channels. The
components will record the mapping between their own
events and channel names. Components can subscribe
channels, i.e. binding the methods of components to the
names of channels. When receiving a binding request, the

event bus will record the subscribe method in a hash map
with the name of the given channel as its key.

When an event is triggered, the component will check
its event-channel mappings to determine which channel
the event should be sent to, and then send it to the event
bus with the given channel name. When an event arrives,
the event bus will find all subscribe methods with the
given channel name. After that the bus traverses the found
methods and invokes them with the event as input
parameter. Event flows through the event bus are shown
in Figure. 3.

Figure. 3. Event Bus and Event Model

B. Browser-Server Communication Mechanisms
Web browsers do not support the communication with

web-delivered services natively. The browser-server
communication mechanisms include service handler,
cache handler, cross-domain handler, HTTP-push handler
and OAuth authentication handler.

Web-delivered Service Handler

Currently many heterogeneous web-delivered services
(SOAP web service, RESTful service) exist over the
Internet. Each of them has its own protocols. Nevertheless,
the browser does not natively support all of these
protocols.

The web-delivered service handler encapsulates the
details of protocols and makes these details transparent to
developers. Generally speaking, given a service interface
description, the web-delivered service handler
dynamically generates a JavaScript class to encode the
request message, send it to the appropriate end-point and
decode the response.

Service Cache Handler

Web-delivered service composition allows developers
to create more complicated service composition

applications in the browser. Due to the increasing
complexity of application logic, the data schema and data
manipulation become more complex as well. As a result,
developers begin to build complicated data models of
applications in the browser to simplify the development.

Although the browser already supports a simple page-
based cache, composition applications require more
complex cache due to the complexity of data model. The
service cache handler allows developers to indicate which
data the application should cache, and which caching
policy it should use.

Cross-Domain Handler

A major limitation of web-delivered service
composition in the browser is the cross-domain limitation.
It prevents scripts running on pages from accessing
services on other sites in different domains [9].
Fortunately, there are already some feasible solutions,
such as JSONP, server proxy and plugin-based approach.

The cross-domain handler supports common cross-
domain approaches. When developers need access cross-
domain services, they should decide which solution to use
and make some corresponding configurations. And then
they can access cross-domain services as if the services
were in the same domain, with all implementation details
of solutions encapsulated by the cross-domain handler.

HTTP-Push Handler

In some applications, real-time dynamic web data such
as chat update, stock tickets and auction updates need to
be propagated to users as soon as possible. Therefore,
these applications require delivery of asynchronous
messages from the server to the browser. The technique is
often described as "HTTP-push". However, the browser’s
request/response architecture prevents servers from
pushing real-time data [7].

Bayeux protocol [8] supports HTTP-push and has been
implemented by many web servers, such as WebSphere
and Glassfish. The HTTP-push handler offers a Bayeux
protocol implementation in the browser and assists
developers to create push-style service composition.

OAuth Authentication Handler

Though web-delivered service composition empowers
developers to create applications by assembling existing
data from different web sites [3], many data in the web
sites are protected through username-password and cannot
be visited without authentication. OAuth is a protocol
which focuses on publishing and interacting with
protected data.

The OAuth authentication handler encapsulates the
authentication process of OAuth, since the process of
OAuth is a bit complex and confusing to be implemented
manually. Developers only need to provide OAuth request
URLs, consumer key and secret, the handler will carry out
OAuth authentication automatically. If users grant access,
the composition application can use these protected data
for further composition.

V. EVALUATION

To evaluate our browser middleware, we implement
iMashup, a web-delivered service composition
environment based on the middleware, and compare it
with other environments. iMashup is built on the top of
the browser middleware. The size of iMashup is 603 KB
while the browser middleware is 566 KB. To our
experience, developing iMashup is a relative easy and
simple work.

The evaluation platform consists of an Intel Core 2
Duo CPU at 1.80 GHz with 2GB of RAM and running the
Windows XP SP3. All experiments are run in four
popular browsers: Internet Explorer 8.0.6001, Firefox

3.0.6, Opera 9.62 and Safari 3.1.2. We focus on three
questions: How does the capability of iMashup compare
with other service composition environments? What is the
overhead of iMashup? What is the scalability of iMashup,
which determines how complex composition the
environment can handle?

A. Capability of iMashup

We compare the capability of iMashup with Microsoft
Popfly, Intel Mash Maker and Yahoo! Pipes, as shown in
Table II. From Table II, we find the functionalities of
iMashup are richer than other three mashup environments,
since iMashup benefits from the capability of the browser
middleware.

B. Overhead of iMashup

For our second question, the overhead of iMashup, we
measured the size of files downloaded and the memory-
consumption. We also compare the result with the
overhead of other three composition environments.

Figure. 4 a) shows the download size of iMashup and
other environments. iMashup is the biggest mainly

TABLE II CAPABILITIES OF BROWSER-BASED SERVICE COMPOSITION ENVIRONMENTS

because the browser middleware is relatively big. It is a
typical result when we compare applications with and
without middleware. There are two main reasons: 1) the
capability comparison in the previous section indicates
that iMashup provides richer functionalities than the other
three.; 2) the other three environments listed are all real
products, and then their sizes are carefully compressed
and minimized. Comparing with them, iMashup is still a
prototype without thorough optimization.

Composition Environment Download Size
(kb)

iMashup (Middleware) 603 kb (566kb)

Microsoft Popfly 347 kb

Intel Mash Maker 259 kb

Yahoo! Pipes 112 kb

a) Download Size

b) Memory-Consumption

Figure. 4. The Overhead of Browser-based Service Composition
Environments.

The size of our middleware is a bit large, which means
iMashup may start up slower than other environments.
Yet Figure. 4 b) indicates the memory-consumption of
iMashup is even smaller than the others. We cannot
accurately analyze the causes because the source code of
the other environments is not opened. However, we
speculate on some of the reasons: 1) the middleware
provides several communication handlers, such as cross-
domain handler, which can be shared by many component
instances. While the other environments pay more
attention to end user service composition and their GUI,
therefore, they may not well abstract and encapsulate
these handlers. For example, maybe each instance has its
own cross-domain handler, which consumes more
memory. 2) the other environments use some powerful
graphical technologies, such as SVG and VML, for more

beautiful GUI. These technologies may also cause more
memory-consumption.

C. Scalability of iMashup

The scalability problems of a service composition
environment relate to the number of users, the number of
instances and the complexity the composition [2]. As we
mentioned above, iMashup, being a browser-based
environment, never suffers from scalability problems
caused by a large number of concurrent requests of users,
since it is executed on the client side. Therefore we
consider scalability of iMashup from two perspectives:
 What is the memory-consumption of component

instances in the container?
 What is the performance of the event bus?

First, we measure the changing memory-consumption
of iMashup with increasing numbers of component
instances. We test a typical component, a Google Weather
component calling RESTful service.

As Figure. 5 shows, at worst (with IE) the memory-
consumption of 200 instances is still lower than the
consumption of Gmail, which is a widely used web
application with complex logic executed in the browser.

Figure. 5. The Memory-Consumption with an Increasing Number of

Component Instances. The rightmost items in the charts are the memory-
consumptions of Gmail.com as a reference.

Second, we measure the performance of the event bus.
For this measurement, we set a one-to-many event
binding: one event publisher and multiple event
subscribers. And then we trigger an event and measure the
time spent from the event triggered until the last
subscriber receives it.

Figure. 6 shows the time spent of blank subscription
methods invocations when an event is triggered. In the
worst case (with IE), our event bus still routes the event
extremely fast, i.e. handling 25,000 subscribers within
350 milliseconds.

The scalability of iMashup still can be optimized.
However, from our experience and the statistics data from
ProgrammableWeb.com, even the most complicated web-
delivered service composition includes far less than 200

Memory-Consumption of Service Composition Environments

0
10
20
30
40

50
60
70
80

IE Firefox Opera Safari

M
em

or
y

(m
b)

Blank Page iMashup Yahoo! Pipes Microsoft Popfly Intel Mash Maker

Memeory-Consumption for Google Weather Component
Instances

0

20

40

60

80

100

120

IE Firefox Opera Safari

M
em

or
y

(m
b)

0 10 50 100 150 200 Instances Gmail

components and 500 subscribers. Thus, we believe the
current scalability of iMashup is well enough.

Figure. 6. The Time Spent with an Increasing Number of Subscription

Methods.

VI. DISCUSSION

Though we have observed that the middleware does
benefit service composition in the browser, there are still
several open issues to further address.

First, we will further minify the size of browser
middleware. In fact, such size is trivial for web browsers
in PC but a bit large for web browsers in mobile phones.
We are trying to separate the core of middleware into
several independent parts and make them be able to be
downloaded on demand.

The evaluation indicates the performance of the event
bus is highly reliant on the complexity of subscription
methods, i.e. complicated methods may cause poor
performance. As we discussed, it is mainly because all
subscription methods are executed within a single thread.
Fortunately, some browser plug-ins support multi-threads
JavaScript. We will try to make subscription methods run
in different threads and believe it can significantly
improve the performance of the event bus.

The communication mechanisms are composed of
three parts. However, the third part, the browser-local
data access mechanisms, is still under development.
These mechanisms aid developers to bring the offline
capabilities into composition applications. They include a
simple object-relation mapping framework, which helps
developers to store data objects into local databases, and
some handlers which can detect and resolve conflicts
between server and local data.

Last but not the least, although iMashup has richer
capabilities, up to now, it only includes a few built-in
components. Consequently, the adoption of iMashup is
still limited, since developers should build required
components by themselves. Furthermore, iMashup does
not provide user-friendly GUI for all features of the
middleware yet. Developers must still code a little to use
some features, such as service cache and HTTP-push
handler. Therefore, an important next step involves

enriching the built-in components and making iMashup
support the missing features.

VII. CONCLUSION

The web-delivered service composition environments
embedded in web browsers are becoming popular since
their advantages such as in user experience and scalability.
These browser-based environments have to handle many
common problems for service composition.

In this paper, we present the common problems for
web-delivered service composition in the browser. We
also propose a new type of middleware embedded in the
browser, which encapsulates the solutions of these
common problems and facilitates the development of
composition applications in the browser. Finally, we
implement a service composition environment, iMashup,
based on the middleware. We evaluate iMashup by
comparing it with some other popular environments.

Acknowledgement. This work is sponsored by the
National Key Basic Research and Development Program
of China (973) under Grant No. 2009CB320703; the
National Natural Science Foundation of China under
Grant No. 60821003 and 60873060; and the High-Tech
Research and Development Program of China (863) under
Grant No. 2009AA01Z16.

REFERENCES
[1] E. Michael Maximilien, Ajith Ranabahu, Karthik

Gomadam, An Online Platform for Web APIs and
Service Mashups. IEEE Internet Computing, 2008

[2] Jin Yu, Boualem Benatallah, Fabio Casati, Florian
Daniel, Understanding Mashup Development. IEEE
Internet Computing, 2008

[3] Volker Hoyer and Marco Fischer, Market Overview
of Enterprise Mashup Tools. International
Conference of Service Oriented Computing, 2008.

[4] Qi Zhao, Gang Huang, Jiyu Huang, Xuanzhe Liu,
Hong Mei, Ying Li, Ying Chen. An On-the-fly
Approach to Web-based Service Composition.
Proceedings of IEEE Service Congress and
International Conference on Web Services, 2008.

[5] Qi Zhao, Gang Huang, Xuanzhe Liu, Jiyu
Huang, Towards a Component Model for Web-based
Service Composition. Journal of Frontiers of
Computer Science and Technology, 2008.

[6] David E. Simmen, Mehmet Altinel, Volker Markl,
Sriram Padmanabhan, Ashutosh Singh, Damia: Data
Mashups for Intranet Applications. ACM's Special
Interest Group on Management Of Data, 2008

[7] Engin Bozdag, A. Mesbah, A. Deursen. Performance
Testing of Data Delivery Techniques, for AJAX
Applications. Journal of Web Engineering, 2008.

[8] Bayeux, http://svn.cometd.com/trunk/bayeux/
[9] Cross Domain Ajax: a Quick Summary.

http://snook.ca/archives/javascript/ cross_domain_aj/
[10] Intel Mash Maker, http://mashmaker.intel.com/
[11] Microsoft Popfly, http://www.popfly.com/
[12] Yahoo! Pipes, http://pipes.yahoo.com/

Time Spent for Blank Subscription Method

0

100

200

300

400

IE Firefox Opera Safari

T
im

e
C

on
su

m
pt

io
n

(m
s)

500 1000 5000 10000 15000 20000 25000 Methods

