
An On-the-fly Approach to Web-based Service Composition

Qi Zhao, Gang Huang, Jiyu Huang, Xuanzhe Liu, Hong Mei

Key Laboratory of High Confidence Software Technologies, Ministry of Education

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China;

{zhaoqi06, huanggang, huangjy07, liuxzh}@sei.pku.edu.cn; meih@pku.edu.cn

Ying Li, Ying Chen

IBM China Research Laboratory, Beijing 100094, China; {lying, yingch} @cn.ibm.com

Abstract

The web-based service composition, e.g. mashup, is

becoming a popular style to reuse web services. From the

perspective of reuse, existing work has limitations on

qualifying whether the service or the service composition

satisfies user requirements and adapting the service or

composition according to the qualification results. For

addressing these limitations, this paper proposes an on-

the-fly approach to web-based service composition.

Firstly, we do not distinguish the design-time and run-

time of services and their composition so that they can be

qualified in a what you see is what you get manner when

services are selected or assembled. Secondly, we propose

a component model for separating the service business

and user interface so that they can be changed

dynamically and independently in the adaptation of

service selection and composition. This approach is

demonstrated by a browser-based mashup tool.

1. Introduction
Currently, there are many services published via

Internet with open APIs. More and more developers are

able to access these services through web and assemble

them to construct their own applications. Many existing

work [1][2] provided web-based service composition

environments, in which the service business logic and

User Interface (UI) are encapsulated into a single

component, called web-based service (WBS) components.

However, current WBS components are strict separated

between design-time and run-time. This separation brings

some serious limitations on software reuse, especially for

qualifying WBS components and their composition.

Firstly, developers should qualify each WBS

component before assembling them. Each component has

its own pros and cons. In particular, rich user experience

is one of the most important features for the web-based

service composition. Therefore, it is hard to qualify one

component whether it satisfies the requirement, without

really using it. Nevertheless, the separation between

design-time and run-time prevents developers from

qualifying WBS components effectively. Because when

components are loaded into the environment, they cannot

be qualified directly since they are just in design-time and

do not have real functionality.

 Secondly, the composition of these components

should be qualified as well. However, there are many

mismatches, such as two different date strings formats,

cannot be found if the composition does not execute really.

The separation between design-time and run-time makes

the mismatch hard to be found.

Unlike traditional off-the-shelf components that need

compilation and deployment, services are actively running

entities [3]. Such a significant difference implies that it is

possible to assemble services in an on-the-fly manner, that

is, 1) when a service is loaded into the composition

environment, it becomes available with real appearance

and functionality immediately, 2) when two services are

assembled, they can interact with each other actually.

Then the services and composition can be qualified in a

“what you see is what you get” way.

Furthermore, qualification is always coupled with

adaptation If on-the-fly adaptation is not supported,

developers may need to modify component source codes,

redeploy components and reload them into the

environment. Such offline adaptation makes on-the-fly

composition impossible. Therefore on-the-fly adaptation

ability is required.

2. Approach Overview

Figure 1 On-the-fly Approach Overview

Our component model is not distinguished as design-

time and run-time. Once loaded, each component is at

runtime with full and actual functionality. Therefore

developers can qualify components by really using it. If

components do not satisfy the requirements, developers

could adapt them on-the-fly. On the other hand, since

components are always at runtime. When developers

assemble them, components can be connected and services

can be invoked just-in-time. This enables developers to

qualify current composition immediately.

3. Web-based Service Component Model
Our WBS component model consists of two parts,

interface and implementation. The interface of component

model consists of User Interface and Programming

Interface since WBS component model encapsulates UI.

The Programming Interface exposes business logic of

WBS component. The UI responds to users’ actions and

invokes the corresponding functions in the

implementation.
The implementation of our WBS component model

adopts the Model-View-Controller pattern. The controller

part consists of several element controllers. Each element

controller encapsulates the interaction logic of one

specific UI element.

The programming interface exposes the business logic

of WBS component. It consists of properties, methods and

events. On the other hand, our WBS component UI makes

elements in UI as the fixed part, while presentation and

structure of the elements as the variable part. The structure

defines the elements’ place and their relationship (i.e.

parent-child), while the presentation defines the elements’

presentation information such as size and color. When

developers reuse the WBS component, they can adjust

configurations to adapt UI with particular scenario.

Another problem which prevents on-the-fly adaptation

is how to adapt the interaction logic while keeping the

component correct when some elements are changed or

removed. According to the controller of our WBS

component model is divided into element-combined

controllers, UI elements can invoke proper business logic

and respond to return results through a specific controller

no matter where it is placed and how it is presented.

Moreover, if a UI element has been removed, the specific

controller will be removed automatically while not affect

the other UI elements and controllers as well.

4. On-the-fly Service Composition
In our approach, dynamic languages and the separation

between design-time and run-time are the most important

in design rationales, which lead to a web-based service

composition environment with on-the-fly capabilities.

The first step of service composition in our web-based

composition environment is retrieving components. Our

WBS component model does not distinguish between

design-time and run-time. Also, our composition

environment does not follow the design-run-debug cycle.

The composition environment is hosted in a web browser

and implemented by JavaScript, which is a dynamic script

language. Hence, the environment can load WBS

component definitions without restarting. Also, because a

WBS component is implemented by JavaScript, a

component can be instantiated without compilation and

deployment once its definition is retrieved into

composition environment. After being instantiated, a

component is at runtime. It connects with a running

service and can respond to user actions with full

functionalities.

Our environment provides publisher/subscriber

connector for developers to assemble components directly.

Moreover, data connector is also provided to handle data

format mismatch. Since every component is always at

runtime, components can be connected just-in-time when

developers assemble them. Service invocations may be

caused by this connection and these invocations may

modify component internal states and UI. Thus developers

can qualify the assemble results immediately.

Besides of programming interface composition, our

composition environment also allows users to assemble

user interface of WBS components. The UI elements of

WBS components will be merged into a new UI when

developers assemble them. Then developers need to adjust

the structure and presentation configuration of this new UI.

The new UI’s configuration is the same as the atomic

component UI’s. Furthermore, to support the on-the-fly UI

composition, our environment keep a detection on

modifications of UI’s configuration. Once a new

configuration is set, it will be immediately applied on the

environment and the new UI will be displayed.

Acknowledgements
This effort is sponsored by the National Key Basic

Research and Development Program of China (973) under

Grant No. 2005CB321805; the National Natural Science

Foundation of China under Grant No. 90612011; and the

IBM University Joint Study Program.

References
[1] J. Yu et al. A Framework for Rapid Integration of

Presentation Components. In the Proceedings of

WWW'07, Banff, Canada, May 2007.

[2] Yahoo! Pipes: http://pipes.yahoo.com

[3] Girish Chafle, Gautam Das, Koustuv Dasgupta, Arun

Kumar, Sumit Mittal, Sougata Mukherjea, Biplav

Srivastava. An Integrated Development Environment

for Web Service Composition. In the Proceedings of

IEEE International Conference on Web Services 2007.

