
Mashing-up Rich User Interfaces for Human-Interaction in WS-BPEL

Qi Zhao
1,2

, Xuanzhe Liu
1,2
, Dawei Sun, Tiancheng Liu

3
, Ying Li

3
, Gang Huang

1,2

1
Key Laboratory of High Confidence Software Technologies, Ministry of Education

2
School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China;

3
IBM Research - China, Beijing, 100193, China;

{zhaoqi06, liuxzh, sundw}@sei.pku.edu.cn, {liutc, lying}@cn.ibm.com, huanggang@sei.pku.edu.cn

 Corresponding author: liuxzh@sei.pku.edu.cn

Abstract—Services computing paradigm together with Web

services have significantly promoted the automation of

business process in enterprise. Prevalent service composition

technologies, such as WS-BPEL and WSCI, provide

promising means to deal with machine-to-machine

communication. Traditionally, in the phase of business

process modeling, there usually require some human-

involved tasks. Recent new technologies such as

BPEL4People and Human Task begin to consider involving

human interaction in business process. However, such

approaches still have some limitations. On one hand, they

exactly require some extensions of current BPEL standards.

As a result, the existing business processes have to be

rewritten and redeployed. On the other hand, they yet lack

of the development and deployment supports of flexible and

reusable user interfaces in business process. In this paper, we

address these issues by enabling human interaction in

business process with rich web applications. Our approach

models human tasks as services, and can be seamlessly

integrated to current BPEL without any modifications to

existing engine and processes. We further support building

human task presentations from service-oriented rich user

interfaces. During the process execution, the corresponding

task stakeholders can select, configure and compose these

reusable and rich UI components according to their own

application context.

Keywords-web service; service composition; BPEL;

human task;

I. INTRODUCTION

In the recent years, the Services Computing paradigm
has been widely adopted. It allows the both enterprises
and end-users to participate and collaborate for their own
interests and benefits by means of service composition.
Particularly, supported by the Web services technologies,
business process automation has significantly evolved in a
service-oriented fashion. Web services providing specific
functionalities can be assembled according to specific
business logics, represented in form of business process
model (e.g, WS-BPEL and WSCI), and finally deployed
and executed on a process engine. The most dominant
service-oriented business process specification, WS-BPEL,
has been very popular in enterprises together with useful
tools support, such as IBM WPS [1] and Active BPEL
Engine [2].

One of the fundamental assumptions of current service
composition technologies is the automated execution of
business process in a machine-to-machine communication
manner. In other words, Web services providing specific
functionalities are fully orchestrated without involving any
human tasks. Human-involved workflows are very
important topics in traditional business process research.
Common human activities in processes involve data input
and validation as well as decision making. Obviously,
most of current service-oriented business process
standards and engines do not well reflect the undisputed
importance of human interactions [3]. Recently, several
vendors like IBM and Oracle provide proprietary BPEL
extensions in their engines to support such “human tasks”.
Promising recent proposals like BPEL4People[4] and
WS-HumanTask [5] allow for a standardized integration
of human-based activities in BPEL processes.

However, we argue that there yet remain some
problems when adopting human tasks in service-oriented
business process. On one hand, neither BPEL4People nor
WS-HumanTask can be seamlessly integrated to current
WS-BPEL editors and engines without any modifications.
It is the fact that they both require extensions beyond
current WS-BPEL standards, while current process editors
and engines have to be enhanced to support the new
features. Therefore, current running processes may require
re-developed and re-deployed. On the other hand, user
interfaces usually play an important role in human-
centered business process, for example, data visualization
(interactive graphs and tables), human action presentation
(textboxes and submit/cancel buttons) or even multimedia
integration (image slide shows). Current business process
techniques mainly focus on the process modeling,
specifications and execution, while not address the
presentation rendering issues for human tasks. Moreover,
as the human interaction logics should well adapt the
service functionalities and business logics, it exactly
requires the development of flexible and reusable rich
user interfaces without too time-consuming and costly
efforts.

To adequately respond to the challenges in human
tasks in service-oriented business process, this paper
proposes a novel approach to mashing up rich user
interfaces in service-oriented business process. First of all,
without disruption for current WS-BPEL standards, we
model human tasks as services and introduce the concept

mailto:liuxzh@sei.pku.edu.cn

of Human-Interaction Services (HTS), a special type of
Web service taking charge of presentation logics and
coordinating with the Web services with business
functionalities. Therefore, the HTS can be seamlessly
integrated into current business process. Secondly, we
show how to automatically generate rich user interfaces
for HTS leveraging the iMashup project toolkit, which is a
web browser-based mashup toolkit. iMashup project
implements a component-based, on-the-fly mashup
composition builder and runtime [6][7] so that non-
professional mashup developers, such as business process
modelers and designers, are easy to utilize the auto-
generated UI and create their own rich, visual and friendly
HTS UI.

The remainder of this paper is organized as follows:
Section 2 illustrates a motivating scenario and discusses
the major related work, BPEL4People. Section 3
illustrates an overview of our approach. Section 4
provides the details of our HTS engine, and rich UI
building and running environment. Section 5 describes our
prototypical toolkit and how it deals with the sample
scenario. Finally, we discuss some improvements in
Section 6 and conclude this paper in Section 7.

II. BACKGROUND

A. Motivating Scenario

In this section, we present an intern payroll process as
a scenario which explains our motivation. In many
companies, interns should report their working days every
month, since their working time is very flexible. In the
salary payment process, the first step is that interns report
their working days. Then their department managers will
check whether these reports are appropriate or not. If the
managers confirm the reports, HR staffs will compute the

intern payroll and financial staffs will submit this into the
account system. Finally, the process will invoke a payroll
agency service provided by the third party bank system to
put the salaries into the interns' account. Figure 1 shows
the sample process.

This scenario obviously illustrates that human tasks
are necessary in business process, since the first four steps
of the process all require human-involved tasks. We call
them Human-Interaction Services (HTS) in this paper. It
also presents that the HTS exactly requires rich, flexible
user interfaces (UI). For example, when the interns submit
working days or the department mangers check the reports,
a visual calendar might be required, since a series of dates
are hard to be input, read and understood by people
without help from the calendar. Similarly, both HR staffs
and financial staffs need some rich UI to assist their work.

B. BPEL4People and WS-HumanTask

WS-BPEL was originally proposed to enable
automated Web service orchestration according to specific
business logics. Therefore WS-BPEL mainly supports
machine-to-machine communication without involving
human tasks. As WS-BPEL has been the most popular
standard in practice, there have been some complementary
works for human-tasks beyond WS-BPEL. The most
typical works are BPEL4People and WS-HumanTask
released in 2007. BPEL4People introduces the notion of
“PeopleActivity” as a new type of basic activity which
enables the human-interaction in BPEL processes. The
details of PeopleActivity are described by WS-
HumanTask. A sample PeopleActivity for the "Working
Days Report" human task is shown in Figure 1 a).

The main problem of BPEL4People is that the
PeopleActivity cannot be directly and seamlessly
integrated into WS-BPEL. As we can see from Figure 1 a),

Figure 1 Business Process for Intern Payroll

BPEL4People uses BPEL extension activity and imports a
new element "b4p:peopleActivity". Obviously, such
extension requires adaption of current WS-BPEL editor
and engine. Otherwise BPEL4People processes cannot be
edited and executed in these tools, because PeopleActivity
is far different from standard WS-BPEL invoke activity
(Figure 1 b)).

On the other hand, there is a lack of concept for the
definition and deployment of flexible and reusable rich
UIs in BPEL4People and WS-HumanTask based
processes [8]. The development and deployment of rich
UIs for human tasks is usually time-consuming and costly
in these processes. Although CRUISE[8] provides an
approach to building rich UI, the solution exactly relies on
WS-HumanTask and cannot be seamlessly applied into
standard WS-BPEL. Furthermore, this approach does not
support UI automatic generation to facilitate rich, flexible
and reusable UI.

III. APPROACH OVERVIEW

Based on the analysis above, we provide an approach
to seamlessly integrating human tasks in WS-BPEL as
well as automatically generating flexible user interfaces
for human tasks. The most important principle of our HTS
and WS-BPEL integration approach is that the solution
should adhere to standard WS-BPEL specifications
without extensions. Therefore, in our approach, all
interactions between the HTS and standard WS-BPEL
tools strictly follow the standard WS-BPEL and Web
service specifications, and exchange standard BPEL or
Web service artifacts, such as WSDL files and SOAP
messages. Figure 2 describes the architectural overview of
our approach.

Figure 2 Approach Overview

The upper part of Figure 2 presents the standard WS-
BPEL design and execution process. At design time,
designers build WS-BPEL processes in editors as usual,
and their outputs are standard WS-BPEL files. These files
can be deployed to any standard WS-BPEL compliant

engine. Neither editors nor engines need offer additional
supports for HTS. The HTS support is shown in the lower
part of Figure 2. This part also follows the separation of
design time and runtime. As mentioned above, our
solution integrates a mashup composition approach to
implementing rich UI of HTS. Therefore we provide a
mashup builder at design time to facilitate rich UI of HTS.
The mashup builder communicates with the WS-BPEL
editor through WSDL files. When a Web service in WS-
BPEL process is specified as a HTS, designer can submit
its WSDL file to mashup builder, and the builder will
parse the inputs and outputs of operation and generate a
basic rich UI. In iMashup toolkit, there are a series of
built-in visual mashup components which are used to
enhance the user experience beyond basic UI. Finally, the
HTS and its rich UI are published to the HTS engine
(whose design details will be described in Section 4). The
engine will automatically assign a new binding for this
service and WS-BPEL designers only need to set the
"invoke" service binding to the new one. Then this HTS is
online and able to be composed in any WS-BPEL process.

In our HTS design time mechanism, both HTS and
common Web services with business functionalities are
described as standard WSDL files. Therefore, HTS can be
imported into standard WS-BPEL editors and integrated
into BPEL processes seamlessly. Another benefit of this
seamless integration is that the process need not be
modified when automated business services and human
tasks replace with each other. For example, in our
motivating scenario, the company might deploy a
management system to standardize intern management one
day. In that case, the first HTS in the payroll process
should be replaced by an automated report service of the
management system. Since both HTS and automated
services are described by same "invoke" activity in BPEL
process, when the new intern management system is
deployed, the BPEL designer just need modify the binding
in WSDL file instead of re-developing the process
specifications.

After the new binding is completed, all requests to
HTS will be redirected to HTS engine. The details of
human interaction are shielded behind this HTS engine
instead of being exposed to standard WS-BPEL engines.
To achieve this goal, we provide a mashup runtime [7]
which is embedded in web browser. The mashup runtime
monitors a pending services list in the HTS engine. When
a SOAP request arrived, the HTS engine will create a new
pending service and the mashup runtime will instantiate a
corresponding rich UI. After task is completed, the
submission data will be sent back to the HTS engine,
packaged as a SOAP response and returned to BPEL
engine. From perspective of BPEL engine, it sends a
SOAP request to HTS engine and receives a SOAP
response. All messages exchanged are standard. By this
means, the whole procedure has no difference from a
standard Web service invocation.

IV. HUMAN-INTERACTION SERVICES IN WS-BPEL

PROCESSES

This section describes the details of some important
components of our HTS supporting mechanism, including
HTS engine and mashup builder. And we also present
some key technical challenges of our solution. Figure 3
shows the internal structure of HTS engine and mashup
runtime. It also demonstrates the communication actions
among them.

A. Human-Interaction Services Engine

Figure 3 Interactions among BPEL Engine, HTS Engine and Mashup

Runtime

The upper part of Figure 3 displays the details of HTS
engine and how it communicates with WS-BPEL engine.
When a SOAP request arrives at HTS engine, a Web
services server (in our implementation, we integrate
Apache Axis [14]) in the engine will handle the details of
the underlying protocols. Then a handling instance will be
created and transform SOAP request message into JSON
(JavaScript Notation Object) [15] format, query
corresponding rich UI for this HTS, and then register a
new service request(?) into the pending service request?
list. The mashup runtime will help users to finish the task
and return data in JSON format to the web server in the
HTS engine. When the HTS handling instance receives
the response data, it will transform the JSON data into

SOAP response and send it back to the WS-BPEL engine
through the Web Service server.

Handling Instances Passivation

A critical problem of HTS engine is how to deal with
the pending HTS requests/instances/handling instances?.
Since people might not deal with tasks in time, HTS
requests are often waiting for a long time before
completed. If there are too many pending service handling
instances, the HTS engine will probably become slow or
even overload.

Figure 4 Handling Instances Passivation Mechanism

In our solution, we provide a handling instances
passivation mechanism, which passivates pending services
until human tasks are completed. This mechanism, as
shown in Figure 4, deals with both asynchronous and
synchronous requests. To passivate an asynchronous
request handling instance, the mechanism serializes the
instance into storage with its callback address as context,
and free the instance. When user’s submission arrives, the
passivation mechanism will reconstruct that instance.
Synchronous requests passivation is quite different.
Synchronous requests should keep a live connection with
the BPEL engine. Otherwise the service invocation will
fail since the connection is closed. Therefore, when
passivating a synchronous request, the mechanism just
sleep the thread of that instance and awake it when data
returns.

Real-Time Pending Services Monitoring

Although the HTS engine supports handling instances
passivation, too many passivated instances (especially
those synchronous ones keeping open connections) may
still consume a lot of resources in the HTS engine.
Therefore another technical challenge is how to notify
users of the arrival of new tasks as soon as possible, since
the delay of notifications will make pending service
accumulate in the engine.

Unfortunately, the web browser, the platform for our
mashup runtime, only supports pull data from server
natively. Such "pull data" pattern means that users get
new pending services only when they retrieve data on
their own initiative. It does not well meet our requirement
obviously. We need that the HTS engine "pushes" new
pending services to the runtime. Therefore we implement
a real-time pending services monitor in the mashup

runtime. Unlike the common "pull data" pattern between
rich UI and web server, the monitor communicates with
the pending services list in HTS engine through a
streaming long-lived HTTP connection, which makes the
server be capable of pushing data to the runtime hosted in
web browser. The monitor sends a HTTP request to the
pending services list at first. After the initial request,
unlike common HTTP connections, the list does not close
the connection, nor does it give a full response. It just
keeps the connection open. Meanwhile, when a new HTS
request is received, a new pending service will be added
to the pending service list. The pending service list returns
the newly added pending service to the monitor in HTTP
chunked mode, using the same request and the connection.
Then the monitor can notify users the new tasks. The open
connection will be kept available until its timeout or some
other reasons, e.g., browser shutdown. Once the
connection is closed, the monitor will request a new
streaming tunnel. This pending services push mechanism
makes users to be able to get new list in real time.

B. Rich User Interface for Human-Interaction Services

Rich Components Mashup Approach.

In section 3 and 4.1, we have explained how the HTS
engine acts as the mediator between the BPEL engine and
UI of HTS. However, a sound human-interaction solution
also needs to cover HTS UI development and deployment.
Accordingly, we propose a rich component mashup
approach to building rich, flexible and reusable user
interface for HTS. Rich components encapsulate both UI
and some application logics [6]. These components
consist of the interfaces and the implementation. The
component model is shown in Figure 5 a).

Figure 5 Component Model, Event Model and Event Bus for Rich UI

The implementation of rich components adopts the
Model-View-Controller pattern. The model implements

application logic for input parsing, data rendering, type
checking, output sending and so on. The view is a
fragment of HTML which is rendered for displaying data
and responding user actions. The controller manages the
interaction logic between model and view. The
programming interface exposes the application logic of
components. It consists of methods and events. Methods
query and modify the component state. Events notify the
changes of the component state and can be published into
the event bus. The UI is implemented by the view part of
component. When developers assemble the components,
they can determine whether the UI of components should
be shown or not (hidden).

Besides a component model, another technical
problem is to provide a composition mechanism to
mashup components together. Our approach provides an
event-based publish-subscribe composition model thus, as
show in Figure 5. The event-based composition model is
well suited to rich UI for HTS, since the rich UI is running
in web browser whose nature is strongly event-based [9].

To support event-based composition model, the
composition model provides a unified event model for all
events of components. The event model comprises the
name of event, the reference of source instance triggering
this event and a hash map containing event parameters, as
shown in Figure 5 b). An event bus supports Publish-and-
Subscribe event binding and provides some channels
which are predefined by developers. The events of
components can be published to these channels, while the
methods of components can subscribe channels as well.
The component publishes an event to the specific channel
in the event bus when this event is triggered. Once an
event arrives, the event bus will look up all subscribed
methods of the given channel, traverse and invoke the
corresponding methods with the event as input parameter.

We develop a mashup builder to support automatic
rich component generation through WSDL files of HTS. It
parses the input parameters of HTS operation, generates
the model maintaining the input and the view displaying
them in a name-value table. The output parameters are
parsed for creating a web form which receives user
submission data. A common controller takes charge of
rendering display table with data model, checking values
based on their types and sending submission data. HTS
designers can enrich the automatic generated rich
component by assembling built-in visual components,
since the user experience of basic component may not be
enough friendly as they wish. Each basic rich component
has a default "onLoaded" event. This event is triggered
when the input data is parsed, and processes the parsed
data as parameters of the event. Visual components can
subscribe this event and use the data rendering their rich
UI, such as calendar or pie charts. Finally, the rich client
and its source HTS can be published into the HTS engine
as mentioned in section 3.

Mashup Runtime

The lower part of Figure 3 presents the details of
interactions between the HTS engine and rich UI at
runtime. As we mentioned in section 4.1.2, the mashup
runtime embedded in web browser contains a real-time
pending service list monitor. This monitor can acquire
new pending services from the list once they published.
After a new pending service arrives, runtime will create a
new rich UI instance to help a user deal with the task. The
mapping between rich UI and specific HTS are saved in
the HTS engine when they are published.

V. TOOLKIT IMPLEMENTATION

The previous sections propose an approach that both
integrate HTS into BPEL processes and adheres to WS-
BPEL specifications. We evaluate this approach by
building a prototype toolkit and implementing the
scenario in Section 2 based on the toolkit. Some user
interfaces are shown in Figure 6.

To prove the generality of our approach, we choose
widely used WS-BPEL 2.0 compliant tools, Netbeans
BPEL editor [16] and GlassFish BPEL engine [17], and
build the intern payroll process. However, in practice,
although Netbeans editor is able to integrate into our
solution since both our solution and the tool adheres to

BPEL specification, there are still some limitations. The
other tools in our toolkit, iMashup builder and runtime,
are both delivered through web browser, but NetBeans is
a Java-based standalone editor. Designers should switch
between browser and native window, when they use these
tools. Therefore although every BPEL specifications
compatible editor can be used in our approach, we
implement a web-based WS-BPEL editor, iServiceStudio
[10]. iServiceStudio runs in web browser, as shown in
Figure 6 a). It is similar with Yahoo! Pipes and supports
designers to visually edit WS-BPEL processes in drag-
and-drop manner. iServiceStudio is able to generate
standard WS-BPEL deployment packages and deploy
them on GlassFish BPEL engine. With this web-based
editor, the whole work, including process design and
deploy, rich UI design and execution, can be completed in
web browser. This improves the usability of our toolkit.

The second tool including in the toolkit is iMashup
builder. iMashup builder supports WYSIWYG (What-
You-See-Is-What-You-Get) rich component composition,
as shown in Figure 6 b). When implementing the
motivating scenario, the builder firstly generates input and
output components, based on "GetWorkingDays"
operation described in WSDL file. The components

Figure 6 Human-Interaction Services Toolkit

display request data and gather submission. We load
another visual calendar component, and connect it with
input component as data source for displaying working
days information friendly.

When intern payroll processes running, the HTS
engine receives SOAP requests, transforms them into
JSON format and publishes new pending service request.
The real-time pending service monitor in web browser
checks updates and refreshes a pending task table
constantly. When a new item displays, the department
manager can open rich UI, which is the composition result
from the previous step. After the rich UI is instantiated,
the instance gets JSON request, displays it in the input
component and passes the data to that visual calendar.
Figure 6 c) gives the screencast of that rich UI in iMashup
runtime. The department manager checks the information
and decides whether to confirm the report or not.

VI. DISCUSSION

Though we have observed that our HTS extension
does benefit human-involved BPEL processes, there are
still several issues to address.

Firstly, although the handling instances passivation
mechanism can deal with the task processing speed
mismatch between human and automated machine to a
certain degree, it is still hard to handle long-time running
human tasks, as they might keep executing for several
days or even several weeks before completed. Especially,
if designers use synchronous "invoke" activities to model
these long-running tasks, the connections for service
invocations will always be closed before the tasks are
completed. Therefore, the long-running tasks should be
modeled as asynchronous activities. In iServiceStudio,
designers can declare a synchronous HTS as a long-time
running task. If they do so, iServiceStudio will remove the
synchronous "invoke" activity, replace with the
asynchronous "invoke-and-receive" activities and give a
long timeout value. Although the series of actions will
modify the initial process and result in re-deployment, it
seems that there is no better solution to deal with the long-
running human tasks.

In practice, some scenarios may require a sub-flow
including several WS-BPEL activities to be mapped to
one human-involved task. For example, in a system
management WS-BPEL process, the administrator may set
up parameters of different servers (web server, application
server and database) in each flow step. However, these
activities may relate to others, e.g. application server
needs IP address of database. Therefore if one human-
interaction service supports multiple WS-BPEL activities,
the task can be proceeded more quickly and much richer
UI can be offered since the related information from
different activities can be handled together. As we known,
mashup is not only UI composition but also a lightweight
approach for service composition [11][12]. Consequently,
our rich UI composition approach can be easily improved

to support multi-activities human-interaction services.
This enhanced solution allows designers to create one
mashup application from a sub-flow of BPEL and replace
the sub-flow with a HTS binding with that mashup
application.

Another important problem in human-involved
processes is how to integrate real people into WS-BPEL
processes, which lead to human roles, people identifying
and grouping, people linking with activities, people
assigning and so on. BPEL4people specification has
several modeling concepts to deal with people integration.
This topic is out of scope of this paper. However, we are
considering people integration in future work, employing
the human workflow model proposed in [13].

VII. CONCLUSION AND FUTURE WORK

SOA and WS-BPEL provide a rapid, flexible and
loosely coupled manner to seamlessly integrate the
enterprise resources into business processes. Many
business processes require human-involved tasks in
practice. However, human-interaction services are not
covered by WS-BPEL, which is primarily designed to
support automated machine-to-machine communication.
Although BPEL4People and WS-HumanTask introduce
an extension to address HTS into WS-BPEL, they require
modification of the WS-BPEL specification and cannot be
applied into standard BPEL editors and engines.

In this paper, we propose a human-interaction services
extension mechanism which adheres to standard WS-
BPEL specifications. The main contributions of this paper
include:
 Enabling Human-Interaction Service in standard

WS-BPEL Processes without specifications
modification or extension;

 Automatically generating rich UI for Human-
Interaction Services and providing a rich
component mashup approach allowing users to
enhance the rich UI.

As we mentioned in section 6, there are some open
issues for our HTS extension approach. In the future, we
plan to investigate into people integration in standard WS-
BPEL. We are also further interested in converting several
HTS into one rich UI if these HTS are related and may be
assigned to the same user. The combining UI may speed
the task processing and offer friendlier user experience.
Finally we will perfect the prototype toolkit to improve its
usability, performance and so on.

ACKNOWLEDGEMENTS

This work is partly sponsored by the National Key

Basic Research and Development Program of China under

Grant No. 2009CB320703; the National Natural Science

Foundation of China under Grant No. 60821003,

60873060, 60933003; the High-Tech Research and

Development Program of China under Grant No.

2009AA01Z16; and the IBM-University Joint Study

Program.

REFERENCES

[1] IBM WebSphere Process Server ,

http://www.ibm.com/software/integration/wps/

[2] ActiveBPEL Engine, http://www.activevos.com/community-

open-source.php

[3] Matthias Kloppmann, et al. WS-BPEL Extension for People-

BPEL4People. International Business Machines Corporation

and SAP AG, 2007.

[4] Ashish Agrawal, et al. WS-BPEL Extension for People

(BPEL4People), Version 1.0. Active Endpoints Inc., Adobe

Systems Inc., BEA Systems Inc., International Business

Machines Corporation, Oracle Inc., and SAP AG, 2007.

[5] Ashish Agrawal, et al. Web Services Human Task(WS-

HumanTask), Version 1.0. Active Endpoints Inc., Adobe

Systems Inc., BEA Systems Inc., International Business

Machines Corporation, Oracle Inc., and SAP AG, 2007.

[6] Qi Zhao, Gang Huang, Jiyu Huang, Xuanzhe Liu, Hong Mei,

Ying Li, Ying Chen. An On-the-fly Approach to Web-based

Service Composition. Proceedings of IEEE Service Congress

and International Conference on Web Services, 2008 (SCC

2008).

[7] Gang Huang, Qi Zhao, Jiyu Huang, Xuanzhe Liu. Towards

Service Composition Middleware Embedded in Web Browser.

International Conference on Cyber-Enabled Distributed

Computing and Knowledge Discovery, 2009 (CyberC 2009).

[8] Stefan Pietschmann, Martin Voigt, and Klaus Meißner.

Adaptive Rich User Interfaces for Human Interaction in

Business Processes, International Conference on Web

Information Systems Engineering, 2009 (WISE 2009), pp351-

364.

[9] Jin Yu, Boualem Benatallah, Fabio Casati, Florian Daniel,

Understanding Mashup Development. IEEE Internet Computing,

No.5, 2008. pp 44-52.

[10] Xuanzhe Liu, Gang Huang, Pei Wen, Hong Mei. Discovering

Homogeneous Web Service Community in the User-Centric

Web Environment. IEEE Transactions on Services Computing,

Vol 2, No.2, April-June, 2009, 167-181.

[11] F. Curbera, M. Duftler, R. Khalaf, and D. Lovell, Bite:

Workflow composition for the web. in Proceeding of

International Conference on Service-Oriented Computing, K.-J.

Lin and P. Narasimhan, Eds. Berilin-Heidelberg: Springer-

Verlag, 2007, pp. 94-106.

[12] Xuanzhe Liu, Wei Sun, Yi Hui, Haiqi Liang. Investigating

Service Composition based on Mashup. Service Congress 2007.

pp 332-339.

[13] Xiangpeng Zhao, Zongyan Qiu, Chao Cai, Hongli Yang. A

Formal Model of HumanWorkflow. Proceedings of 2008 IEEE

International Conference on Web Services (ICWS 2008).pp 195-

202.

[14] Apache Axis, http://ws.apache.org/axis/

[15] JSON. http://www.json.org

[16] NetBeans with the Enterprises Pack, http://soa.netbeans.org/soa

[17] GlassFish, https://glassfish.dev.java.net/

[18] Yahoo! Pipes, http://pipes.yahoo.com

http://www.ibm.com/software/integration/wps/
http://www.activevos.com/community-open-source.php
http://www.activevos.com/community-open-source.php
http://ws.apache.org/axis/
http://www.json.org/
http://soa.netbeans.org/soa
https://glassfish.dev.java.net/
http://pipes.yahoo.com/

