
Composing Data-Driven Service Mashups with Tag-based Semantic Annotations

Xuanzhe Liu1, Qi Zhao1, Gang Huang1, Hong Mei1, Teng Teng2

1Key Laboratory of High Confidence Software Technologies (Peking University)Ministry of Education
2 Kingdee Middleware Company Ltd

Email: {liuxzh,zhaoqi06,huanggang}@sei.pku.edu.cn, meih@pku.edu.cn, teng teng@kingdee.com

Abstract—Spurred by Web 2.0 paradigm, there emerge large
numbers of service mashups by composing readily accessible
data and services. Mashups usually address solving situational
problems and require quick and iterative development lifecyle.
In this paper, we propose an approach to composing data-
driven mashups, based on tag-based semantics. The core
principle is deriving semantic annotations from popular tags,
and associating them with programmatic inputs and outputs
data. Tag-based semantics promise a quick and simple com-
prehension of data capabilities. Mashup developers including
end-users can intuitively search desired services with tags, and
combine several services by means of data flows. Our approach
takes a planning technique to retrieving the potentially relevant
composition opportunities. With our graphical composition
user interfaces, developers can iteratively modify, adjust and
refine their mashups to be more satisfying.

Keywords-Service composition, Service mashup

I. INTRODUCTION

Spurred by Services Computing and Web 2.0 paradigm,

the Web is currently moving towards a participatory and

“programmable” platform. One noteworthy trend over the

Web is the rapid growing “service mashups”[1] that combine

existing web services and data sources[2]. For example,

as of February 2011, Programmableweb.com has published

more than 5,500 web mashups. Several mashup tools have

been developed, such as Yahoo! Pipes1, IBM DAMIA2

and Google Mashup Editor3, support mashup development

with several facilities[3]. However, we argue that there

are still some key challenging issues remained. Firstly,

since mashups are usually developed for meeting situa-

tional requirements in short development lifecycle, and many

mashup developers are end-users, they exactly wish fast

discovery of desired services and easy integration with less

programming efforts. Secondly, due to the ever-increasing

number of Web services, it requires simple and native

semantic approaches to deal with the interoperability and

integration of services. Thirdly, most mashup developers

want to figure out all the intermediate steps needed to

generate the desired mashups automatically[4], so it might

take the evolving collections of services that can possibly

incorporate with existing ones.

Addressing the problem above, we propose an approach

1Yahoo Pipes. http://pipes. yahoo.com
2IBM DAMIA. http://services.alphaworks.ibm.com/graduated/damia.html
3Google Mashup Editor. http://code.google.com/intl/zh-CN/gme/

for composing service mashups. We take the fact that most of

current service mashups are exactly “data-driven” ones[3].

Inspired by the success of popular social tagging for the Web

resources, we derive the tag-based semantics, and associate

them with the programmatic inputs and outputs data of

Web services. Tag-based service model is relatively simple

and close to natural representation. Developers including

end-users can simply take tag-based search for service

discovery, and combine a set of tags as tag-based data

flows, for describing their desired outputs. We develop a

two-phase forward-backward planning technique, to retrieve

all possible solutions constituting the outputs, based on

the tags in repository. These solutions not only contain

the desired outputs, but also some additional interesting or

relevant ones as potential composition opportunities. Our

composition runtime interprets the tag-based solutions and

generates the mashups. Such makes the mashup development

perform in “data-centric” fashion, and lowers the complexity

of underlying developer programming tasks. Additionally,

with our graphical composition environment, developers

can obtain all immediate composition results visually, and

iteratively refine their goals until the final outputs satisfying.

The main contributions of this paper are as follows:

• A tag-based service semantic model for providing

simple and intuitive understanding and discovery of

services capabilities;

• A data-driven service composition approach for lower-

ing the complexity of underlying programming efforts;

• A planning technique for retrieving both desired outputs

and some possible interesting or relevant composition

opportunities;

• A graphical composition tool implemented for aiding

the rapid and high-quality mashup development.

The rest of this paper is organized as follows. Section II

describes our approach with motivating example. Section III

describes the approach overview, with the tag-based service

model(in Section IV), the two-phase search planning tech-

niques (in Section V) and the implementation of iMashup

UI (in Section VI). Section VII evaluates the approach with

experimental results. Section VIII presents related works and

Section IX ends the paper with conclusion and future work.

2011 IEEE International Conference on Web Services

978-0-7695-4463-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ICWS.2011.31

243

II. MOTIVATING EXAMPLE

To begin with, we describe a motivating example, and

illustrate how the tag-based composition approach reduces

complexity for creating new mashups. Suppose John is

planning a trip and building an application that quickly finds

hotel and nearby restaurants in the tourist city. Firstly, John

selects a HotelSearch web service, which accepts inputs

as (“hotel”,“city”,“state”) and generates outputs as (“ad-
dress”, “telephone”,“fax”, “zipcode”). John next selects

another Web service BooRah RestaurantSearch4, which can

produce outputs (“rest-name”,“address”, “telephone”) with

the inputs (“food-pref”, “zip”). Then John extracts the

(“zipcode”) of HotelSearch using XPath query and connects

it to BooRah RestaurantSearch service as input parameter

(“zip”). Suppose John submits the requests like (“Hilton”,
“Washington DC”, “Chinese food”) to the mashup appli-

cation, the hotel and its nearby Chinese restaurants will be

retrieved and displayed on map.

In the scenario above, John has to investigate each Web

service specification (WSDL files or API documentations)

when creating the mashups. It requires complex program-

ming skills to process XML (e.g., using XPath). And, as one

zipcode usually covers several districts, the BooRah Restau-
rantSearch service might not return the closest restaurant to

the hotel.

Later, we make John re-create such a mashup with

our approach. John begins by selecting some keywords

“Hilton”,“Washington” as the initial input, for these key-

words natively describe his requirements. Our approach

suggests a list of services that can accept these keywords,

e.g., the HotelSearch, HotelRanking (which returns the

reputation rank with a given hotel and city) and Hotel-
Reservation (which requires the hotel name, city, state and

date). John next selects HotelSearch, and gets the returned

results (“1919 Connecticut Ave., NW, Washington DC”,
“Zipcode, 20009”,“Tel, 1-202-483-3000”,“Fax, 1-202-232-
0438”). John then selects the address “1919 Connecticut
Ave” and adds a new tag “Chinese food” as the desired

outputs. Our approach then plans a list of three composition

solutions. As BooRah RestaurantSearch requires the zip as

input (which is note included in current state), we suggest

adding the tag “20009”, or assembling Google GeoCode
service to convert “1919 Connecticut Ave” to the zipcode,

and connecting it to the BooRah RestaurantSearch service.

We also suggest the Yahoo! Travel Guide service, which can

generate the rating and destination address of a restaurant,

given the source address and food preference. The Yahoo!
Travel Guide service might be more satisfying, as it returns

the closest restaurant opposed to the hotel address instead

of zipcode. Now John can attain outputs of the restaurant

“Raku Asian Diner” with address “1900 Queen Street”.

Then iMashup iteratively suggests the Yahoo! Traffic Report

4http://api.boorah.com/restaurants/WebService

service planning the best traffic routine from “Hilton” hotel

to “Raku Asian Diner”, the Yahoo! Travel Guide service

listing the spots along the routine, and the flickr service

displaying the related photos for the spots.

The example above illustrates some key features of our

approach:

• Simple service model: Our approach explores the

semantics from tags, and associates them to service

inputs and outputs. Taking the lesson learned from

social annotations on flickr, del.icio.us and twitter,

we believe that tag-based semantics simply represent

service capabilities and facilitate service discovery.

• Data-driven composition: Our approach takes the data-

centric composition view which emphasizes the data

over the services. Developers can simply use tag-

based data flows to describe the composition, while not

paying attention to underlying programming details.

• Higher quality assistance: Our approach suggests

ranked solutions that meet the desired goals, and might

provide more potential relevant composition opportuni-

ties. It assists developers iteratively refine their mashups

for higher quality.

III. OVERVIEW OF APPROACH

Following the features above, Figure 1 shows the

architectural overview of our approach: a service repository

named Service Community, the Service Advisor, and the

User Interface. Our approach consists of four main phases,

each of which can be iterated more than once.

The Service Communityprovides Service Publication
Interfaces for publishing individual services and mashups

applications, and also exploits a Service Crawler to

download available web services from existing registries

(including Xmethods 5,Strikeiron6,WebServiceX 7 and

Esynaps8 and the published mashups on Programmableweb.

With a series of data mining techniques[5], the Tag
Manager derives the tag hierarchies from a set of tags,

which might be from service providers(e.g., in service

documentations), service consumers (e.g., annotations,

comments and feedbacks), or results of service invocations.

The catalog manager keeps track of all services and

mashups to facilitate the search of resources.

. With a data mining approach[5], we derive these tags

into a set of semantically meaningful clusters. Then we

associates tags with Web services inputs/outputs.

The Service Advisor is responsible for planning the

composition solutions relevant to desired goals. It captures

the current composition states and dynamically plans a set

of candidate potentially relevant composition solutions that

can be added to the mashups. It means that, according to

5http://www.xmethods.com
6http://www.stikeiron.com
7http://www.webservicex.net
8http://www.esynaps.com

244

Figure 1. Overview of iMashup Approach

the semantics from the hierarchical tag taxonomy, once

a tag contained in service operation A’s outputs can be

semantically associated with another tag in service operation

B’s inputs, a tag-based data flow (named Tag Link in this

paper) will be created. All tag links are manipulated in

a Directed Acyclic Graph (DAG). The Goal Analyzer
interprets developers queries, Composition Planner will

perform a graph-based planning process to generate all

the possible relevant compositions that can constitute the

tag-based goals at least once.

Mahsup developers view, search and select tags as

desired outputs on the User Interface, as well as attain

recommendations from Service Advisor. Developers are

allowed to choose one of the generated composition

solution. We have developed a prototype iMashup Runtime
Engine[6] interprets the composition of corresponding

services, and display the immediate results. Also, the

developers can refine generated composition solutions, by

adding new tags or importing new developed services.

IV. TAG-BASED SERVICE SEMANTIC MODEL

A. Tag-based Semantic Model

We firstly propose the tag-based service semantic

model. One observed fact is that most services mashups

development mainly follows a “data plus code”
fashion[3][7][8]. It means that, most mashup developers

may pay more attention on what data a Web service can

consume and produce, and integrate them in a fast and

simple manner. Based on such assumption, we associate a

set of tags with input/output messages of Web services, as

the semantic annotations describing the properties of the

data that the Web service can consume and produce.

We begin with a basic model that associates tags with Web

services operations. Usually, a Web service is published

through WSDL with an accessible URL. Thus a Web

service can be described as a set of 5-tuple space: (ws, tag,
url, user, time). It means that the Web service ws of the url

is annotated by the user with tag at the specific time. In

this model, we mainly focus on the tag and the service, and

define the following set: T={t1,t2, ..., tN},�={ws1,ws2,
..., wsM}, where N and M respectively represents the

number of tags and Web services in Service Community
repository.

B. Deriving Hierarchical Tag Taxonomy

Although tags provide an easy and instinct view for

annotating web service semantics, some limitations must

be considered. As tags are freely and arbitrarily chosen

instead of relying on a controlled vocabulary, tag ambiguity

will significantly take side-effect on composition efficiency.

Different people might use the same tag to express different

meanings (homonyms), or different tags might denote

the same meanings (synonyms), or the same tag might

represent different meanings (polysemys). Such ambiguity

will make incorrect matching between service data. Another

problem is that tags only represent a flat but not hierarchical

annotation structure, thus the large number of tags might

bring difficulties to developers in browsing the system

capability and application domain.

To respond to the difficulties for tag-based semantics, we

have designed an unsupervised technique to derive several

semantically meaningful concepts from tags[5]. Each cluster

consists of several tags with similar specific concepts. For

example, the tags {“wind”, “temperature”,“temperatureF”,
”humidity”, “weather”,“NOAA”, “37oC”} all reflect the

concept “weather”, therefore they are categorized into one

cluster. To facilitate mashup developers for fast browsing,

we assign the notion of “Feature Tag” for each cluster. It

indicates that tag ti covers lots of other tags in cluster Cj ,

so ti is the Feature Tag that is more capable of summarizing

the cluster Cj’s semantics than any other tags in cluster Cj .

For example, “weather” is the Feature Tag above.

After deriving the clusters as well as the Feature Tags, we

now have attained a structured taxonomy T representing

the hierarchical relationships between tags. The hierarchical

tag taxonomy is denoted as T, which contains a set of

semantic concepts {C1, C2, ..., } and each Ci has several

tags {ti1, ti2, ...}. For tag t1∈ T and t2∈ T , if t2 represents

higher-level semantic than t1, we formally define the t1 is a

sub-tag of t2 as t1 ≺ t2, indicating that Web services tagged

by t1 can be also semantically tagged by t2. For example,

the tag “Google Map” is the sub-tag of “Map”. Obviously,

all tags in Ci are sub-tags of the “Feature Tag” � in its

cluster. The sub-tag relationship can be transitive,if t1 ≺ t2
and t2 ≺ t3, we can conclude t1 ≺ t3. Also, for ∀t ∈ T
is a sub-tag of itself, t≺ t. We define a tag transforming

function f :

f(t′) = t, if t′ ≺ t (1)

245

C. Attaching Tag-based Semantics to Services

We then will formalize the service semantic model, by

attaching tag-based semantic annotations to inputs and

outputs messages. Assume that a Web service has two

sets of parameters, wsi={I1,I2,...} for request messages

(as inputs) and wso={O1,O2,...} for response messages

(as outputs). Let set P be the union of input and output

parameters,wsi ∪ wso. For every parameter p ∈ P, with

the derived hierarchical tag-based taxonomy T, we define a

mapping function Γ : P → T , between service parameters

and tags:

Γ(p) =

{
t if exists t ∈ T

∅ otherwise
(2)

Equation (2) indicates that, if there exists a tag t ∈ T
semantically equivalent to parameter p, we can replace

p by t in terms of composition. From our investigation,

the Web service parameters are usually defined in form

of verb plus “noun”, such as “PostZipcodeRequest”,
“GetRestaurantInfoResponse”, etc. So we extract the nouns

in the parameters and bind them to a tag. In our approach,

we bind a parameter with a Feature Tag � in T. From the

inheritance relationship defined in last section, it means

that all sub-tags {t1,t2,...} ≺ � can also be bound to p.

Associated with semantics, we then describe a Web

service ws as a two-tuple,<T i,T o>, where T i and T o

respectively represents the set of tag-based descriptions

for inputs that can be consumed and outputs that can be

produced. Here, we constrain that T o ⊆ T i, which ensures

all inputs can be consumed by the service. Obviously, to

guarantee the constraints above, for ∀t ∈ T o, ∃t′ ∈ T i such

that t ≺ t′.

V. DATA-DRIVEN SERVICE COMPOSITION

A. Tag-based Composition Semantics

In terms of service composition, if a Web service ws1 can

produce t1 as its output and the service ws2 can consume

t1 or its father tag t2 as its input, we can conclude that

ws1 and ws2 are composable. Then the tag-based service

composition problem is defined simply as the result of

creating a data flow by tags, namely Tag Link (TL) in the

following.

Definition V.1. We denote TL as <T i
1, T o

1 >, <T i
2,T o

2 >, ...,
<T i

n,T o
n> for each <T i

k,T o
k > corresponds to a Web service

wsk. If ∀k, the composition is valid when the following two
preconditions are satisfied:

1) ∀t ∈ T i
k+1,∃t′ ∈ T o

k , such that t=f(t’);
2) | T o

k |≥ | T i
k+1 |.

The above definition indicates the data dependencies

between Web services: subsequent Web services may use

the outputs produced by preceding Web services as inputs.

Such data dependencies are described in terms of tags, and

determined by tag-based semantics. The first precondition

ensures the semantic mapping and propagation between

Web services, and the second precondition ensures that no

extra parameters are left.

B. Tag-based Composition Goal

From the data-centric perspective, the composition

problem is just that achieving their desired goals from

their initial requests, while not making them know the

underlying composition details. As we have associated

tags with services, the mashup developers can now simply

describe their goals in form of tags, and submit the

requirements to our system. In our approach, given the

developer goals g ⊆ T , select a set of Web services

� = {ws1, ws2, ...} such that each Web service wsk∈ �,

for ∀t ∈ g, ∃t′ ∈ Γ(P) and t′ ≺ t where P is the parameters

set of �. It indicates that � can finally produce all the

tags in g or sub-tags thereof. For example, the goal Map,
Temperature, Routine can be matched to a the Google Map
Service with the output gmap due to the sub-tag relationship

gmap ≺ Map.

The developer goal can be directly matched to tag-based

outputs of a single Web service. Moreover, it can be

accomplished by searching a sequence of Web service

that can produce the desired outputs. Such sequence of

Web services composition can be viewed as an analogy of

searching the ”hyperlinks” between web pages[5]. In other

words, goal satisfaction is the search for all possible Tag
Links that can be constructed from an initially given set of

tags.

C. Data-Driven Composition with Tag-based Semantics

The tag links are used to create a DAG. Then our approach

performs a graph-based planning approach for tag-based

goal-driven composition.

1) Data-Driven Composition Planning: The problem of

tag-based, data-driven composition can be described as that

of generating several Tag Links that can produce the output

satisfying the desired goal. A data-driven composition

problem for service composition can be transformed to the

graph-planning model with AI planning techniques. We

formally define such a problem as a planning problem as a

seven-tuple:

Ψ=< T,�, S, ri
0, g, Θ(s), τ >, where:

1) T is a set of hierarchical tags;

2) � is a set of Web services, ∀ws ∈ � is a two-tuple

defined in last Section, in form of < T i, T o >;

246

3) S is a set of composition states,∀s ∈ S is a collection

of tags in T;

4) ri
0 ⊆ T is the initial input tags, and the initial state of

the composition s0 = ri
0;

5) g ⊆ T is the desired goal described by tags, and the

final state of the composition sG⊇ g;

6) Θ(s) is a set of Web services {ws1,ws2,...}, Θ(s) ⊆ �,

such that ∀wsk, T i
k ⊆ s. It means that wsk can be

invoked in the state s by requesting tag ts⊆ T i
k;

7) τ is the state transition function, τ(wsk, s′)=s that

transit the state s’ to s, in condition that s=s’∪T o
k and

wsk∈ Θ(s′). It means that the output tags of wsk in

Θ(s′) are the subset of input tags of one Web service

wsl �∈ Θ(s′);

Definition V.2. Suppose that the initial input tags ri
0 and

desired goal g, where g ⊆ T and ri
0 ∈ T . The tag-based

service composition problem is to find a finite sequence of
services, ws1, ws2, ..., wsn such that:

1) ∀wsk(k = 1, ..., n) is a two-tuple < T i
k, T o

k >;
2) wsk is invoked sequentially from 1 to n;
3) ∀wsk, T o

k ⊇ T i
k+1;

4) g ⊆ (ri
0 ∪ T o

1 ∪ ... ∪ T o
n);

5) the total cost
∑n

k=1 C(wsk) is minimized.

2) Composition Planning Algorithms : As the size of

the search space will be exponential to the size of tags, to

address the intractable tag-based service composition, we

propose a heuristic planning algorithm within polynomial-

time complexity. When the developer selects a tag from

the tag cloud or input a keyword as the initial request ri
0,

the planning algorithm first computes the cost of achieving

individual tags starting from ri
0 by conducting a forward

search. Such a Depth-First step constructs all the possible

Tag Links that can perform the final goal. Based on the

results above, the planning algorithm then approximates the

sequence of Tag Links that connects ri
0 to the final goal by

a regression search step.

In the forward search stage, the planning algorithm

employs a cost value gri
0
(t), which indicates the cost of

achieving t ∈ T from ri
0. We can recursively compute the

value of gri
0
(t) according to the following equation:

gri
0
(t) = minC(ws) + max

t′∈s′
gri

0
(t′) (3)

where C(ws) is an invocation cost of a Web service. In our

model, we simply assume that the default value of C(ws)
is 1. Initially,gri

0
(t) is assigned to 0, if t ∈ ri

0, or to ∞
otherwise. Then the initial state s is ri

0. For each ∀wsk ∈ Θs,

we add all tags in T o
k to the state s and the function gri

0
(t′) is

updated until ∀t ∈ T o
k . In case that Θ(s) does not increase

any longer, it means that no additional tags can be added

from the search space and no solution can be found. We

maintain a Web service ws as a predecessor Web service of

t ∈ T if ws is the first service that can produce t, and denote

Ω as the set of predecessor Web services for t.
Now we can generate all the possible composition

solutions to g from ri
0. Next step of the planning algorithm

is to retrieve the optimal composition plans by a backward

search step, as shown in algorithm V.2. For each state s in

all generated solutions, we associate a temporary goal g′ to

denote the goal starting from s. Initially g′ is assigned to

ri
0, and we specify a set of Web services ω that belongs

to Ω(t), where t∈ g′.The planning algorithm selects a Web

service from ω (lines 4-7 in algorithm) at each backward

step. We use the heuristic that choosing a Web services

matching g′ earlier in the regressive search to make the

arrival at the initial state faster. We identify δ(wsk) as the

value of [T o
k] ∩ g′, which indicates that a Web service can

match g′ better than others in current solutions. A Web

service with higher δ holds a higher probability to match

g′ so that the search space will be reduced. According

to the hierarchical tag structures, our planning approach

can improve the composition quality by avoiding partial

composition as much as possible.

The cost of our planning algorithm consists of basic

forward search planning and regressive backward planning.

The procedure of forward search can be transformed to a

depth-first graph traversal procedure. The maximum length

of Tag Links is limited by |�|, so the iteration’s upper limit

is |�|. At each iteration step there are at most |�| Web

services and associated |T | tags examined, so the forward

search is accomplished in O(|�|2|T |). On the other hand,

the regressive search procedure has at most |�| iterations. At

each iteration step, a binary-sort algorithm can be employed

to retrieve the a Web service ws with the largest δ, and such

a step costs O(|�| log |�|). So the total cost of backward

search is O(|�|2 log |�|). Due to the fact a Web service has

a set of parameters (described as tags), obviously |T | � |�|,
and the cost of forward search will be much bigger than that

of backward search. To draw a conclusion, the cost of our

Input: ri
0 and g

Output: Ω is the predecessor set of Web services for t
initialization;1

s=ri
0:C=∅;d=0;;2

while ¬(s ⊇ g) do3

λ={wsk|wsk ∈ Θ(s), s �∈ C};4

for t in T o
k (wsk ∈ λ) do5

if gri
0
(t)=∅ then6

gri
0
(t)=d;Ω(t)=Ω(t) ∪ wsk;s=s∪t;7

end8

end9

C=C∪λ;d++;10

end11

Algorithm V.1: Basic Forward Search Planning

247

Input: ri
0, g and Ω

Output: A tag link TL
initialization;1

g′=ri
0;2

while ¬(g′ = ∅) do3

ω=∪t∈g′Ω(t);4

χ = max δ(ω);5

TL=TL∪χ;6

g′=[g′ \ (T o
χ ∪ ri

0)] ∪ T i
χ;7

end8

s=ri
0;9

while ¬(TL = ∅) do10

if (wsk ∈ Θ(s) and wsk ∈ TL) then11

s = s ∪ wsk;12

TL = TL \ T o
k ;13

end14

end15

Algorithm V.2: Regressive Backward Search Planning

planning algorithm is determined by the number of services

and the size of tags in the Service Community.

VI. USER INTERFACE DESIGN

One of the key features of our approach is to develop a

user-friendly composition interface. We have implemented

the browser-based iMashup composition tool[6]9 to support

the data-driven mashup composition. As shown in Figure 2,

a tag cloud will be first displayed to the mashup developers,

indicating all the relevant functionalities in current Service
Community. Tags with larger fonts than others, are the

Feature Tags. Developers can select one or more tags

from the tag cloud, or directly search for several tags as

composition goals. The Service Advisor recommends a

set of optional composition solutions that can constitute

the goal, and display them on the screen by sorting their

ranking values. Each recommended solution not only has to

contain all the tags of the goal, but also may bring new tags

as the potential relevant composition goals. Developers are

allowed to iteratively refine their goals by removing tags,

or adding tags from the recommended solutions. Each time

the goal is modified, it will result in new recommendations

generated from the planning technique. Meanwhile, it

will immediately retrieve all the possible tags in Service
Community that can reach such goal, and synchronize the

tag cloud view to display only relevant tags.

At anytime, developers can click each alternative

solution, and the user interface will display a graphical

view of the its composition topological structure. The

graphical representation consists of a set of vertices and

edges, where each vertex stands for the Web service

9iMashup is now partially open-sourced on
http://code.google.com/p/imashup/

Figure 2. iMashup UI Interface

associated with tags and each edge means the data flow

(tag links) between the Web services. It also allows the

developers to have a deep insight, by double-clicking

the vertex, and they will be navigated to the “Service
Component View” mode and view the detailed descriptions

of the services. For space limited, the design details

can be referred from our previous work[6]. Once the

developers regard that a (partial) composition solution is

currently satisfying, they can immediately run it by clicking

“Show me!”. We have designed an event-driven service

composition runtime to delegate the requests to the remote

services. Our composition tool interprets data exchange in

JSON10 format. The composition results will be displayed

to developers, to help them interactively revise whether

their goal has been satisfied, and iteratively refine their

goals based on current solutions.

VII. EXPERIMENTAL EVALUATION

This section evaluates our approach from two aspects:

the composition quality and planning performance. Since

tag-based semantics play the crucial role in our approach,

we have taken more than 200 Web services, 3,100 mashup

applications and 23,971 tags as data sets11.Using our data

mining techniques[5], we have attained 594 distinguished

clusters.

A. Composition Quality Evaluation

To evaluate the composition quality, we conduct exper-

iment by testing the outputs produced by our planning

techniques. We set up a series of experiments to evaluate

the concept coverage of tags. Twenty developers arbitrarily

search their goals on our system, and we check how many of

10JavaScript Object Notation. http://www.json.org
11These are from http://www.programmable.com and existing Web ser-

vice resources on Service Community platform described in [5]

248

their desired goals or relevant interested outputs are captured

by the composition algorithm. Top-k in Figure 3 means the k
ranked composition solutions including their desired outputs.

It can be observed that in the Top-5 curve, about 80% of all

developers have all their desired or relevant goals in the Top-
3 recommendations, and about 10% users have more than

90% desired or relevant goals. The same observation holds

for the Top-5 plot where 78% of the users can discover more

than 90% of their desired or relevant goals covered by the

our composition techniques. Although only 68% of all users

are satisfied with 75% results from Top-10 returned plans,

we argue that the results are acceptable, for the developers

are more likely to prefer less than five options. The results

have shown that our planning algorithm can capture most

user desired goals or potential interests.

Another results of our planning approach is the discovery

Figure 3. User Requirements Satisfaction

of potential composition opportunities. We choose 25 sample

mashup applications from Programmableweb, each of which

at least contains 10 services. For each sample mashup, we

extract the outputs from its services and the final output.

For each output and the input tags, we run the planning

composition algorithm to produce the plans that can retrieve

the same output given the user inputs and form a mashup

incrementally. As shown in Figure 4, we can observe that

the planned mashups almost have the same size as the

original mashups. For further investigation, we check that the

coverage of common concepts associated with the outputs

between the planned solutions and original mashups can

reach a very high rate. It means that our algorithm can

generate desired outputs as the original mashups. Moreover,

another fact is that our planning techniques can retrieve more

concepts than the original mashups in over 90% cases. It

means that, based on the hierarchical tags, our approach can

generate more potential relevant composition solutions to

enlarge the developers’ composition opportunities.

B. Composition Planning Performance Evaluation

This experiment aims at verifying the scalability of the

data-driven planning composition with the number of ser-

vices. We set up a series of simulations by running mul-

tiple queries against different sizes, from (1,000 to 10,000

Figure 4. Output Concepts Coverage

services). As the hierarchical structure can be periodically

generated, we assume that the maximum size of tags is 5000,

which indicates upper limit of states of the search space.

Figure 5 shows the execution time for a series of queries. For

each repository size, all planning durations keep increasing

with the number of request inputs involved. We can note that,

the planning algorithm can answer most of the requests in

less than 60 seconds. Once the size of services exceeds 8000,

the algorithm has to cost more than 2 minutes to recommend

the composition solutions. Obviously, such overhead cannot

be accepted by the developers in real scenarios, for it is too

long for them to wait for retrieving the immediate responses.

Figure 5. Planning Performance

VIII. RELATED WORKS

Mashups have also encompassed a wide research interests

in the last few years. A number of mashup approaches,

techniques and tools have emerged, both for enterprise and

personal purpose[3]. Following the data-centric fashion,

several works have been done for the rapid prototyping

of mashups. MashupAdvisor[4] suggests recommendations

of mashups based on current inputs; Marmite[9] supports

processing data services in a flow manner and integrate

with other data services by operations like join and filter;

SpreadMash[10] takes the spreadsheet model to combine

data from several Web services; intelligent matching[11]

and automatic completion[12] also make the creation of

data mashups more efficiently.

Rather than processing data heterogeneity in ad-hoc

manners, it is argued that mashup development might

leverage some semantic approaches to coordinate the

249

interoperability of diverse Web services[1]. We argue that,

the exploration of tag-based mashup development might

be unique, compared with most existing works. Tag-based

semantics require much less skills and are much more

instinctive and simpler. The successful adoption of tags

on social networking platforms, such as Del.li.cous, flickr
and Twitter, has revealed that tags not only benefit the

organizing contents, but also facilitate the navigation for

users to discover interesting resources. We also note that,

the unified use of tags can be accepted by service providers,

business analysts, application developers and even end-

users. As such, the tag-based service semantics make

service capabilities more natively and simple described.

It will significantly bridge the gap of requirement and

development, and accelerate the data-driven mashup

development without so many underlying programming

efforts. It should be particularly noted that, the primitive

of tag-based service composition was also proposed in the

MARIO system[13], which provides us useful inspiration.

However, our approach works by checking if a set of tag
links available in the current state can be used to construct

an input to a Web service; and if so, it generates a new

tag links corresponding to the desired outputs. Therefore,

compared to MARIO, our approach can enlarge the space of

composition opportunities, find potential relevant services

for their emerging situational requirements, and promote

the mashup for higher quality with useful assistances.

IX. CONCLUSIONS AND FUTURE WORK

This paper describes how to make use of pervasive

tags for the data-driven mashup development tasks. We

have described tag-based service semantic model, data-

driven composition planning techniques, and the graphical

composition user interfaces.

The current work mainly aims at personalized mashups,

and cannot well support complex composition logics in

enterprise context. One ongoing interesting issue is to

derive some service oriented collective intelligence[14] for

better problem solving.

ACKNOWLEDGMENT

This work was supported by the National Basic Research

Program (973) of China under Grant No. 2009CB320703,

the National Natural Science Foundation of China under

Grant No. 60821003, 60873060, 60933003, 61003010; the

EU FP7 Project under Grant No. 231167; and the National

S&T Major Project under Grant No. 2009ZX01043-002-002.

REFERENCES

[1] D. Benslimane, S. Dustdar, and A. P. Sheth, “Services
mashups: The new generation of web applications,” IEEE
Internet Computing, vol. 12, no. 5, pp. 13–15, 2008.

[2] J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding
mashup development,” IEEE Internet Computing, vol. 12,
no. 5, pp. 44–52, 2008.

[3] V. Hoyer and M. Fischer, “Market overview of enterprise
mashup tools,” in Proceedings of 6th International Confer-
ence on Services Oriented Computing. Berilin-Heidelberg:
Springer-Verlag, 2008, pp. 708–721.

[4] H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin,
“Mashupadvisor: A recommendation tool for mashup de-
velopment,” in International Conference on Web Services,
September 2008, pp. 337–344.

[5] X. Liu, G. Huang, P. Wen, and H. Mei, “Discovering ho-
mogeneous web services community in the user-centric web
environment,” IEEE Transactions on Services Computing,
vol. 2, no. 2, pp. 167–181, April-June 2009.

[6] X. Liu, Y. Hui, W. Sun, and H. Liang, “Towards service com-
position based on mashup,” in IEEE SERVICE CONGRESS,
2007, pp. 332–339.

[7] A. Bozzon, M. Brambilla, F. M. Facca, and G. T. Carughi,
“A conceptual modeling approach to business service mashup
development,” in Proceedings of IEEE International Confer-
ence on Web Services, ICWS 2009. Los Angeles, CA, USA:
IEEE Computer Society, 2009, pp. 751–758.

[8] A. Leff and J. T. Rayfield, “Eds: An elastic data-service
for situational applications,” in Proceedings of IEEE Inter-
national Conference on Web Services, ICWS 2010. IEEE
Computer Society, 2010, pp. 187–194.

[9] J. Wong and J. I. Hong, “Making mashups with marmite: To-
wards end-user programming for the web,” in Proceeding of
ACM 2007 SIG Conference on Computer/Human Interaction
(CHI’07), May 16-24 2007, pp. 1435–1444.

[10] W. Kongdenfha, B. Benatallah, J. Vayssière, R. Saint-Paul,
and F. Casati, “Rapid development of spreadsheet-based web
mashups,” in Proceedings of 18th World Wide Web Confer-
ence, J. Quemada, G. León, Y. S. Maarek, and W. Nejdl, Eds.,
2009, pp. 851–860.

[11] C. Wu, T. S. Dillon, and E. Chang, “Intelligent matching for
public internet web services towards semi-automatic internet
services mashup,” in Proceedings of IEEE International Con-
ference on Web Services, ICWS 2009. Los Angeles, CA,
USA: IEEE Computer Society, 2009, pp. 759–766.

[12] T. M. O. Greenshpan and N. Polyzotis, “Autocompletion for
mashups,” in Proceedings of 35th International Conference
on Very Large Data Base (VLDB’09), Lyon, France, 2009,
pp. 538–549.

[13] E. Bouillet, M. Feblowitz, Z. Liu, A. Ranganathan, and
A. Riabov, “A faceted requirements-driven approach to ser-
vice design and composition,” in Proceedings of 2008 IEEE
International Conference on Web Services (ICWS 2008).
IEEE Computer Society, 2008, pp. 369–376.

[14] M. Tanaka, Y. Murakami, D. Lin, and T. Ishida, “Service
supervision for service-oriented collective intelligence,” in
Proceedings of 2010 IEEE International Conference on Ser-
vices Computing, SCC 2010. IEEE Computer Society, 2010,
pp. 154–161.

250

