
Transforming Browser-based Rich Clients to Mobile

Phone Applications: a Demonstration on Android

Daimeng Wang, Qi Zhao, Gang Huang
Key Laboratory of High Confidence Software Technologies, Ministry of Education

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China;

Corresponding to hg@pku.edu.cn

ABSTRACT

Rich clients running in web browser become a popular style of

web applications. Such browser-based rich clients are usually

designed for personal computers and seldom work well on mobile

phones due to the phones’ incapacity of displaying the relatively

large user interface. On the other hand, mobile phones provide

many features bringing better user experiences than PC but

today’s browser-based rich clients are unaware of and unable to

use these phone features. In this paper, we propose an automated

approach to transforming browser-based rich clients to mobile

phone applications and demonstrate the approach on Android by

1) displaying the PC-style user interface on the smaller phone

screen and 2) enabling the data embedded in the rich client to be

exchangeable with the native Android applications.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques –

computer-aided software engineering (CASE), user interfaces.

General Terms

Design.

Keywords

Rich Client, Mobile Phone, Android Apps, User Interface.

1. INTRODUCTION
Web clients, especially browser-based rich clients that have many

characteristics of desktop applications, are being adopted widely in

the World Wide Web. Running in web browsers with the rich user

experience-enabled Web technologies such as HTML 5 and

Javascript, they are granted with advanced capacities. Included in

these capacities are accessing data and functionalities published by

Web Servers through SOAP, RESTful Web services and

RSS/Atom feeds, executing business logic based on response data,

providing rich user interface (UI), and even supporting service

composition [3][4][5].

At the same time, an increasing number of mobile phones are

running rich clients in their mobile versions of web browsers.

Compared to personal computers (PC), mobile phones have as

many weaknesses as strengths. A major weakness of mobile

phones is their relatively smaller screen. A laptop PC with a 13 or

15 inch screen has a resolution of 1280*800 or 1440*900, while a

mobile phone usually has only a screen of only 2.8 to 4.1 inch

with a resolution of 320*240 or 480*320. As a consequence, rich

clients originally designed for PC users perform poorly on mobile

phones, that mobile phone users are often frustrated with constant

zooming and scrolling. The strength of mobile phones is the

integration of various features, including basic phone functions

and desktop applications. These features make mobile phones

capable of much more various tasks and bring better user

experiences compared to PC. Due to these differences, it is

extraordinary difficult for rich clients to utilize strengths and avoid

weaknesses for both platforms at the same time. In addition,

despite their characteristics of desktop applications, rich clients are

accessed in browsers unlike other mobile phone applications,

bringing inconformity to user experience.

In practice, one of the solutions to these problems is to develop a

counterpart of the original rich client for mobile phone users, with

specially designed browser capable of utilizing some features

provided by mobile phones. These versions are often limited to a

narrow range of screen sizes. If a new kind of device (with a

screen size different from that of PCs and current mobile phones)

becomes popular, a new homologous version must be designed

and implemented. Besides, they are still accessed via browsers and

the inconformity problem is not solved.

A better solution is to develop stand-alone mobile phone

applications. This approach provides better user experiences, but

is limited to not only the screen size, but also the operating system

the applications are running on. Therefore, developing such

applications for a variety of operating systems is required, causing

enormous amount of coding in more complex programming

language such as Java, Object-C, etc. Moreover, updating these

applications is a frustrating process which requires downloading

and re-installation. In some cases, there exist asynchronous data

between stand-alone applications and browser based rich clients.

Finally, phone features can be utilized in these two solutions are

only the most basic ones. More advanced features provided by

various phone applications are still unaware of.

In this paper, we propose an automated approach to transforming

browser-based rich clients to phone applications, called rich-client-

based applications, with demonstration on Google Android, the

most popular smartphone platform. The main contribution of this

paper includes:

 UI adaptability: The whole UI of the rich client is split into

several small parts before it is displayed on the screen.

 Data exchangeability: A mechanism is established enabling

the data embedded in the rich client to be exchangeable with

the native functions and applications of mobile phones.

The rest of the paper is organized as follows. Section 2 briefs the

architecture of our transformation approach. Section 3 describes

our design in detail. Section 4 lists several related work. Section 5

includes conclusion and future work.

2. APPROACH OVERVIEW
Figure 1 illustrates the architecture of a rich-client-based

application and its relations with its server, the operating system

and other desktop applications. A rich-client-based application

contains two major parts: a browser engine and an HTML user

interface.

Figure 1. Architecture of a transformed rich-client-based

application.

The browser engine is the core of a rich-client-based application. It

is similar to those of other common browsers, containing basic

browser functions to parse, render and display the rich client’s

user interface which is written in HTML, CSS and Javascript.

Additionally, the browser engine needs to be enhanced to assume

two other responsibilities: adaptation preprocessing and event

handling. Furthermore, depending on the method of UI adapting

and event handling, it may be required that the browser engine

contains other special functions discussed in Section 3.

Adaptation preprocessing is the preparation stage of UI adaptation.

The UI of rich clients is usually initialized with some basic

frameworks and generated dynamically on the fly, which requires

a runtime dynamic UI adaptation approach. However, a fully

runtime adaptation will give users glances on the process of UI’s

loading, generating and adapting. To avoid such poor user

experience, after the browser engine fetches an HTML document

representing the UI from the server, some preprocessing must be

accomplished before the UI is displayed to the user.

The event handling function of the browser engine provides an

interface for interaction with the operating system (for basic

mobile phone functions), desktop applications and other rich-

client-based applications. When the user chooses the data to be

exchanged with other phone features, a consequent event is

published and all mobile phone functions and applications

subscribing this event will be notified.

The browser engine is operating-system-sensitive, which means

for each kind of operating system a homologous version of the

browser engine needs to be developed. On the same operating

system, fortunately, the same browser engine can be reused on

different rich –client-based applications.

The adapted HTML user interface is generated from the original UI

of the browser-based rich client. Its web page structure is analyzed

and reconstructed to fit the screen based on the runtime DOM-tree.

The whole UI is split into sections reasonably smaller to be

displayed on the screen. At the same time, a navigation interface is

also generated to allow users to switch between different sections.

3. DESIGN AND IMPLEMENTATION

3.1 User Interface Adaptation
Supported by CSS and Javascript, the user interface of a browser-

based rich client can always be viewed as a tree-like structure

called Document Object Model (DOM) tree, with each HTML tag

as a DOM node.

Figure 2 shows the home page of Ctrip as an example. Figure 2.a

demonstrates the page disposition of Ctrip’s UI. Figure 2.b and

Figure 2.c shows the actual structure of the page in form of HTML

text and DOM tree. We will be using this case as the example for

UI adaptation section.

Figure 2. Example: www.ctrip.com.

3.1.1 Automated Adaptation
The automated approach to adapting user interface of rich clients

is discussed thoroughly in work [1]. It provides a mechanism for

dynamic UI partition and automatic navigation. It can run on any

rich client and on any browser, and provides a setting interface to

determine how a page is to be partitioned. In our example, with

the correct settings, it can automatically divide the UI of ctrip.com

exactly in accordance with its disposition shown in Figure 2.

However, the effectiveness of the settings differs from case to case.

It is hardly possible to find one single setting for every rich client

we are trying to adapt. Another drawback of automated approach

is that the differences between sections of the UI are completely

ignored. Taking Ctrip for example, in Figure 2, sections (5), (6)

and (7) in are mostly sponsors and ads, while section (8) contains

only a long list of hot links. These sections are less important and

could be removed in order to simplify the UI on mobile phones

and improve user experience. On the contrary, section (1) is the

header and contains navigation links throughout the site. It is likely

that users want it shown at the top of the screen all the time.

The UI of a rich client is highly dynamic, involving both frequent

changes to the inner HTML text of DOM nodes and insertion or

deletion of entire DOM nodes and their descendants, causing the

partition pattern needing runtime modification. Therefore a

mechanism is needed for monitoring such DOM tree changes. The

approach introduced in work [1] uses an extraordinary costly

method of monitoring the inner HTML code of each section, due

to the ordinary browser’s lack of supporting of such monitoring

mechanism. However, our approach uses a purposefully enhanced

browser engine, which makes it possible that we monitor DOM

node insertion, deletion and modifications through events, thus

significantly reducing the cost of dynamic partition.

3.1.2 Manual Configuration
The automated approach introduced in work [1] has some flaws,

which are difficult to fix due to the approach’s intention for

universality and compatibility. However, these intentions are not

included in our study of transforming rich clients to phone

applications, where some case-by-case configuration is entirely

acceptable. There could be a unique set of configuration data for

each rich-client-based application to ensure its best performance

and user experience.

There are two levels of manual configuration. The first one is the

above mentioned settings in the automated UI adaptation

approach. These settings could define how large a partitioned

section can be, whether the CSS style of each section should be

changed, etc. This level of configuration intends to improve the

effectiveness of the automated UI adaptation to its best. It is

difficult, though, for this level of configuration to help determine

whether a section is important or not. When the UI updates, this

level of configuration could remain unchanged, and may need

modification only when the disposition of the UI is totally

reconstructed.

The second level of configuration directly designates the root

nodes of the DOM trees included in each section. Developers need

to analyze the HTML and CSS code of the original UI and

determine how the UI should be split and how important each split

section is. The automated approach is helpful to generating a

default pattern. This level of configuration aims to provide best

user experience through the analyzing and designing of developers

themselves. There are two drawbacks of this level of configuration.

The first one is that it requires the chosen designated DOM nodes

to have unique identification properties. In our example of Ctrip in

Figure 2.b, the “id” property of the “” tags and the “class”

property of the “<div>” tags would be suffice for developers to

mark each sections. Another drawback is that a minor updating

consisting of changes on these identification properties will require

an update of the configuration data as well, thus increasing the

maintenance cost.

In practice, the two level of configuration can be used

simultaneously. The second level of configuration is of high

priority to ensure the best user experience. And when it becomes

unavailable, the automated partition method is executed with the

first level of manual configuration as its settings. Figure 3 shows

the UI adaptation for Ctrip on Android emulator, using both

automated approach and manual configuration.

Figure 3. UI adaptation for Ctrip on Android emulator.

3.2 Data Exchange
A browser-based rich client contains a large amount of data, many

of which can be inputs for other applications. Enabling the data

embedded in the rich client to be exchangeable with the native

functions and applications is considerably beneficial to user

experience.

To properly establish the connection between different data types

and different mobile phone functions and applications, events are

introduced to serve as communication agents. When a user selects

some text, all events will be listed, sorted by their relations with

automatically detected data type. The user may need to choose

which event he or she wished to publish. Then the mobile features

subscribing this event will take the previously selected text as

input.

Figure 4 shows an example of relationships between data types,

events and applications. Data types are automatically detected

through either regular expression (e.g. phone number) or

searching (e.g. contact name). The detectable data types and the

detection method are embedded in browser engine and cannot be

changed unless the browser engine updates. Each type of data is

related to one or more events and each event can have one or

more subscribers. Events and its subscribers are stored in a file

and can be manually added by developers and users. The browser

engine fetches the event and subscriber list from this file and

listens to the events published though user’s interaction with the

UI. In other words, other phone features do not need to modify

themselves to subscribe these events. Instead, developers or users

need to designate such relationships themselves.

Figure 4. An example of relationships between data types,

events and applications.

There are three kinds of event subscribers: basic mobile phone

functions, rich-client-based applications and stand-alone desktop

applications. For most mobile operating systems, basic mobile

phone functions are permanent and APIs of accessing these

functions are already provided. Thus, event subscribing of these

features can be directly integrated in the browser engine. As for

rich-client-based applications, it is easy for their developers to

write some configure data designating these applications’

subscribing events during their developments. For other desktop

applications, however, it is not practical, although possible, for

developers to bind each of them to one or more events. If the need

arise, the users could create such bindings themselves.

Additionally, it is hardly possible that these applications directly

accept selected data. Instead, the data should be copied to

clipboard for the likely subsequent pasting action.

Luckily, many mobile phones’ operating systems provide their

own mechanisms for local applications to communicate with each

other through run-time messages. Android, for example, uses

intent messaging as a facility for binding between its components.

The Android system is capable of finding appropriate applications

to respond to an intent message. Such mechanisms are very useful

and could be the foundation of our data exchange between rich-

client-based applications and other mobile phone features, without

needing for developers’ or users’ further settings. Our approach

mentioned above, on the other hand, could still be a valuable

supplement for further customization.

4. RELATED WORK
For user interface adaptation, Work [6] and [7] introduced an

approach for traditional dynamic web pages. Methods introduced

in these works are single-shot server-side adaptation based on

HTML text analysis. In practice, UC browser and Baidu

Transcoding both provide web page adaptability. UC browser

could adapt fetched web pages before displaying them, disabling

Javascript and some CSS style. Baidu Transcoding adapts web

pages and filters Javascript and CSS codes at server side, thus

significantly reduces phone traffic. Since Javascript and some CSS

are disabled in both practices, it is impossible for them to preserve

all features provided by rich clients.

The data exchange part is similar to Mashups, where data and

function from different services are combined to create new

services. Currently most Mashups are service driven, which means

that the combination of services are already determined and data

flows through the designated path. Our approach, however, is

data-driven. The combination of applications can be determined

by the users themselves according to the data they are interested in.

The idea of developing desktop applications for mobile phone

using HTML, CSS and Javascript is presented in development

tools and middleware such as Phonegap and Rexsee. The

applications developed with these tools are hybrid, meaning that

they are neither truly native nor purely web based. The difference

between the two is that Phonegap stores its user interface and

logic code locally, aiming for client-side applications, while

Rexsee is an enterprise mobility suite designed for server-side

application development.

5. CONCLUSION AND FUTURE WORK
Our paper presents an automated approach to transforming

browser-based rich clients to phone applications, using Android

platform for demonstration. We combine the automated approach

to user interface adaptation with manual configuration to

reconstruct the UI of the original rich client to fit the screen of

mobile phone. Additionally, we add event handling mechanism to

enable the data embedded in the rich client to be exchangeable

with the native functions and applications phones. Out method

provides a way of developing mobile phone desktop applications

based on already existed rich clients with a minimum quantity of

coding and maintenance cost.

Future work includes testing and improving performance for both

UI adaptation part and data exchange. One possible improvement

in future work is adopting better UI adaptation method to deal

with rich clients with more complex and less clearly structured UI.

6. REFERENCES
[1] Gang Huang, Daimeng Wang. Adapting User Interface of

Service-Oriented Rich Client to Mobile Phones. The 6th IEEE

International Symposium on Service-Oriented System

Engineering (SOSE), 2011.

[2] Gang Huang, Qi Zhao, Jiyu Huang, Xuanzhe Liu, Teng Teng,

Yong Zhang, Honggang Yuan. Towards Service Composition

Middleware Embedded in Web Browser. International

Conference on Cyber-Enabled Distributed Computing and

Knowledge Discovery, 2009, 93-100.

[3] J. Duhl, White paper: Rich Internet Applications. Technical

report, IDC, November 2003.

[4] M. Driver, R. Valdes, and G. Phifer, Rich Internet

Applications Are the Next Evolution of the Web. Technical

report, Gartner, May 2005.

[5] Qi Zhao, Gang Huang, Jiyu Huang, Xuanzhe Liu, Hong Mei,

Ying Li, Ying Chen. A Web-Based Mashup Environment for

On-the-Fly Service Composition. SOSE 2008, pp. 32-37.

[6] Y. Chen, W.Y. Ma, and H.J. Zhang, Detecting Web Page

Structure for Adaptive Viewing on Small Form Factor

Devices, Proc. 12th Int’l World Wide Web Conf., May 2003.

[7] Z. Hua, X. Xie, H. Liu, H. Lu, W. Ma. Design and

Performance Studies of an Adaptive Scheme for Serving

Dynamic Web Content in a Mobile Computing Environment.

IEEE Transantions on mobile computing, vol. 5, no. 12,

December 2006.

