

T0804059

Towards a Component Model for Web-based Service Composition

ZHAO qi
1
, HUANG gang

1+
, LIU xuanzhe

1
, HUANG jiyu

1

1. School of Electronics Engineering and Computer Science, Peking University ; Key laboratory of High Confidence Software

Technologies (Peking University)，Ministry of Education, Beijing, 100871, China

+ Corresponding author: E-mail: huanggang@sei.pku.edu.cn

一种基于 Web 的服务组装构件模型

赵祺 1
, 黄罡 1+

, 刘儇哲 1
, 黄冀渝 1

1.北京大学信息科学技术学院软件研究所 高可信软件技术教育部重点实验室 北京 100871

摘要：基于 web 的服务组装正成为一种流行的组装风格。许多已有的工作提出将服务业务逻

辑和用户界面封装为一个基于 web 的服务构件，并在基于 web 的环境中组装这些构件。这些

构件模型在复用，尤其是构件验证、适配、以及复合构件的支持方面仍存在许多局限。本文

提出一种新型构件模型以支持基于 web 的服务组装。首先，该构件模型将用户界面和服务业

务逻辑分离以获得更好的适配性。其次，开发人员不仅可以在业务逻辑的层次组装这些构件，

还可以在用户界面的层次进行组装。同时，该构件模型支持实时组装以实现及时、有效的验

证和适配。该构件模型还支持将组装结果发布为一个新的可复用的服务构件。

关键词：复用；服务组装；混搭

Abstract. The web-based service composition is becoming a popular composition style in Service

Oriented Computing. Many existing work proposed encapsulating service business logic and User

Interface (UI) into a single web-based service component and assembling these components in

web-based environment. However, these component models are yet limited in terms of reusability,

especially for component qualification, adaptation and composite structure support . This paper

proposes a component model for web-based service composition. Firstly, we present a

well-structured component model that decouples the UI and service business logic for better

adaptation. Secondly, developers are able to assemble components not only at business logic level

but also at UI level. And our component model also supports on-the-fly composition, which

provides a quick and effective feedback way for qualification. Thirdly, the component model

supports the composition result to be published as a new component for further reuse.

Key words: reuse; service composition; mashup

 the National Key Basic Research and Development Program of China (973) under Grant No. 2002CB312000（国家重点基础研究

发展规划，973）; the High-Tech Research and Development Program of China (863) under Grant No. 2007AA010301 (国家高技术研究

发展计划); the National Natural Science Foundation of China under Grant No. 90612011（国家自然科学基金）; and the IBM University

Joint Study Program（IBM 大学合作项目）.

mailto:huanggang@sei.pku.edu.cn

2

1 Introduction

Being one of the key ideas for Internetware, software reuse offers a great deal of potential in terms

of software productivity and software quality [2]. Generally, there are two main reuse styles:

composition-based reuse and generation-based reuse. Composition-based reuse has been more

widely used in practice, such as Component Based Software Development (CBSD) and

Service-Oriented Architecture (SOA). As a target application domain or computing paradigm of

Internetware, SOA allows developing software systems by assembling loosely-coupled, gained

services.

Currently, there are many services published via Internet with open APIs, such as Amazon S3 and

Google Map. Therefore, more and more users are able to access these services through web as well

as assemble them for their own applications, e.g., those so-called mashups [7].

Many existing work [3][4][5][6] proposed encapsulating service business logic and User Interface

(UI) into a single component (called web-based service components, WBS component for short, in

this paper). And then developers can create applications in web-based environment, such as web

browser, in a more interactive manner. However, there still have many limitations in current WBS

component model, especially for component qualification, adaptation and composite structure

support.

Given a set of components, and a schema for assembling them, qualification is to check the

proposed composition satisfies a given set of requirements [2]. Unlike traditional off-the-shelf

components that need compile and deployment, services are actively running entities [11]. Such a

significant difference makes service composition “on-the-fly” with immediate reaction. And that

gives a quick and effective feedback way for qualification. First, a service can be invoked without

deploying it and the result will be returned immediately. Therefore developers can qualify the

service on the fly. Second, since services can be assembled and invoked just-in-time, developers can

retrieve the real-time “execution result” of service composition once they assemble some services.

Accordingly, the service composition can be qualified on-the-fly. In briefly, qualification can be

carried out simultaneously with on-the-fly composition. However, the on-the-fly ability is not well

supported in current WBS component models.

If retrieved components are sufficiently “close” to the requirements and are of sufficient quality,

developers should adapt them [2]. WBS components encapsulate UI, while UI is the most variable

element considering the fast evolving composition context. For example, a Scenic-Spots List WBS

component may invoke a remote service to get scenic-spots data and display it in a list. When this

component is used individually, the list is necessary for displaying data. When it is composed with a

map WBS component, the scenic-spots can be displayed on the map and the scenic-spots list

becomes useless and redundant. However, in most current WBS component models, such as current

mashups, UI is described by fixed markup files and cannot be modified. On the other hand, WBS

components also include some interaction logic which manipulates the relationship between UI and

services. However, the interaction logic and UI in current WBS component models are tightly

coupled. Hence, once UI is modified, the interaction logic will break down. In other words, these

component models are not able to adapt flexibly in different scenarios.

Moreover, composite component is important in reuse, which allows developers to publish the

composition result as a new component for further reused. In SOA, composite component is also

one of the core principles and supported by the most process-based service composition, such as

3

Business Process Execution Language for Web Services (BPEL4WS). However, current WBS

models do not support composite component yet.

In this paper, we present a novel component model to solve the above reusability limitations in

web-based service composition. This component model is easy to adapt within different scenarios,

supports on-the-fly service composition and composite component.

The rest of this paper is organized as follows. Section 2 illustrates a sample scenario to explain the

problems in web-based service composition we mentioned above. Section 3 gives an overview of

our approach. Section 4 provides the details about component model. It also presents how it

supports composite component and on-the-fly composition. Finally, we discuss related work in

Section 5 and conclude in Section 6.

2 Motivation Scenario

We begin with a typical scenario to explain the problems in WBS composition mentioned above.

This scenario is the development of a City Tourist Guide, as shown in Fig.1. In this scenario, there

are three WBS components: A City Scenic-Spots List, which lists scenic spots of a selected city; an

Image Searcher which searches and displays images by keywords; a Google Map which displays

locations of given addresses. The City Tourist Guide requirement is that scenic spots of this city

should be displayed on the map with images when a city is selected. It can be implemented by

assembling the three components.

Fig.1 Motivation Scenario

图 1 动机场景

In this scenario, we can find the problems mentioned above. First, the geo-data of scenic-spots

 A prototype is open source at http://sourceforge.net/projects/imashup/

http://sourceforge.net/projects/imashup/

4

and map may be mismatch, which makes location markers display at wrong places. In traditional

composition environment, this mismatch cannot be discovered until the application is deployed.

However, the on-the-fly capability makes developers be able to find the mismatch once the two

components are assembled. Second, the UI should be able to be customized and assembled together,

which means the images should be nested in the maps location markers and redundant UI elements

(i.e. spots list and keyword input of Image Searcher) should be removed. Finally, composition result,

the city tourist guide, may be further integrated with other components, such as an airplane ticket

booking component. Current WBS component models do not support composite component.

Therefore developers cannot use the city tourist guide as a WBS component but should assemble the

three components again with the airplane ticket booking component.

3 Approach Overview

In this section, we give a brief overview of our approach, which is briefly illustrated in Fig.2. The

Fig.3 is a snapshot of assembling the city tourist guide in our composition environment. The left

part displays the composition result, while the right part is the management panels which allow

developers control the components.

Fig.2 Approach Overview

图 2 方法概要

5

Fig.3 Composition Environment

图 3 组装环境

Considering our city tourist guide scenario, developers should firstly use the searcher panel to

search and retrieve three components into environment. The components will be initialized once

they are retrieved. And they will be displayed as A), B) and C) in Fig.1. Next, developer can interact

with these components (i.e. searching some example keywords for images) for qualification. If the

components do not satisfy the requirements completely, they can adapt with the configuration panel.

In our scenario, developers will nest the image in the map and remove spots list and keyword input

of Image Searcher. The adaptation result should be like the left part of Fig.3. And then developers

can assemble the components. Since our component model and composition environment support

on-the-fly capability, qualification is able to be carried out simultaneously with composition. For

example, the scenic-spots list will connect with the Google map. Since on-the-fly composition

support, the geo-data of scenic-spots list will be sent to Google map and location markers will

display immediately once the connection sets up. If the geo-data of two components is mismatch,

the location markers will display at wrong places. Developers can discover it just in time and

modify the connector to resolve it. Finally, developers can publish the composition result as a

composite component for further reuse. In addition, the management panels in our composition

environment are also WBS components. And these components can be removed from the

environment after composition completed. In that sense, our composition environment can be

considered as an incubator, while this composition can be considered as evolving the incubator to

the city tourist guide application.

6

4 Component Model

Like traditional component models, our WBS component model consists of two parts, interface

and implementation. In contrast with common components, the interface of component model

consists of User Interface and Programming Interface since WBS component model encapsulates

UI. The Programming Interface exposes business logic of WBS component. WBS components

interact with others by their programming interface. The UI responds to users’ actions and invokes

the corresponding functions in the implementation. The component model is shown in Fig.4.

Fig.4 WBS component Model

图 4 WBS 构件模型

4.1 Implementation

The implementation of our WBS component model employs Model-View-Controller pattern so

that presentation and functionality can be coupled in a loose way.

The model implements business logic by invoking a remove service. In the city tourist guide

example, the Image Searcher component’s model part is responsible for calling a remote Image

search service (i.e. Flickr) to find images.

The view constructs and manages UI elements. An element of UI can be an atomic HTML element

such as the button of the City Scenic-Spots List component, or a group of HTML atomic elements

such as the scenic-spots list of the City Scenic-Spots List component.

The controller manages the interaction logic between model and view. The controller part consi sts

of several element controllers. Each element controller encapsulates the interaction logic of one

specific UI element. The Image Searcher component has two element controllers: one is a button

controller which responds to button clicked event and calls image search functionality, the other is

an image controller which gets return image link and displays the corresponding image.

Our WBS component model’s UI can flexibly adapt with different scenarios, because the

controller is divided into several element controllers and the view leaves the capability of

configuring their structure and presentation to developers. We will discuss how to adapt UI in the

following section.

4.2 Interface

The programming interface exposes the business logic of WBS component. It consists of

7

properties, methods and events. Properties describe the state of a component and can be queried and

modified. Methods can query and modify the component state . Events notify changes of the

component state. The Image Searcher Component’s programming interface includes “keyword”

property, “clickSearchButton” and “searchImages” methods , “onImageChanged” and

“onSearchCompoleted” events.

An Interface of a reusable component consists of two parts [1]: the fixed part, which consists of

the part of the component that must be used, and the variable part, which depends on the particular

use. Our WBS component UI makes elements in UI as the fixed part which is implemented by the

view, while presentation and structure of the elements as the variable part. The structure defines the

elements’ place and their relationship (i.e. parent-child), while the presentation defines the elements’

presentation information such as size and color. A WBS component has default structure and

presentation configurations. When developers reuse the WBS component, they can adjust

configurations to adapt UI with particular scenario.

The Fig.5 give the City Scenic-Spots List component UI elements, default structure and

presentation configurations. The UI elements are described in JSON (JavaScript Object Notation)

format, which is widely used in web-based environment. The structure and presentation

configurations are described by related web standards, XHTML and CSS. This component has two

UI elements, a city selection and a list. And the default structure configuration puts the selection and

list into two “div” markups. The presentation configuration describes how to display these elements.

Fig.5 User Interface and Configurations

图 5 界面与配置文件

It should be noted that, another problem is how to adapt the interaction logic while keeping the

component correct when some elements are changed or removed. According to our WBS component

model, UI elements can invoke proper business logic and respond to return results through a specific

controller no matter where it is placed and how it is presented since the whole controller is divided

into element-combined controllers and the interaction logic is divided to element granularity.

Moreover, if a UI element has been removed, the specific controller will be removed automatically

while not affect the other UI elements and controllers as well.

8

4.3 Component Composition

We define two types of connectors to enable components to interact with others’ functionalities

through programming interfaces, as shown in Fig.6.

Fig.6 Component connectors

图 6 构件连接子

Simple connector enables two components to interact directly. This connector supports a

component to connect its method with another component ’s event. Then this component can catch

the event triggered by the other component and invoke the corresponding method.

However, data of multiple components may be in different formats, so that it prevents components

from being connected directly. Data connector can handle data format mismatch. Data connectors

work with the built-in data wrappers which handle specific kinds of data transformation, e.g.

content-filter. Connectors also allow developers to program a function for enhancing their

functionalities, in case that the logic of data transformation is too complex to be handled by built -in

data transformers

On the other hand, UI composition is relatively easy since our WBS component model gives

flexible UI adaptation capability. The UI elements of WBS components will be merged into a new

UI when developers assemble them. Then developers need to adjust the structure and presentation

configuration of this new UI. The new UI’s configuration is the same as the atomic component UI’s.

The structure configuration of “city tourist guide” is shown in Fig.7. In this scenario, the input and

button of the Image Searcher, along with the display list of the City Scenic-spots List, are removed

from the configuration. Moreover, since the image is displayed in the location marker on the map,

the xml element corresponding to the Image Searcher is nested in the xml element of the Map in the

configuration.

Fig.7 UI Composition Structure Configuration

图 7 复合界面结构配置文件

4.4 Composite Component

When developers assemble the WBS components, they just work against the component interfaces

and do not need to care about the implementations. So making a composition result as a composite

9

component means developers should define interface of the composition result. The composite

component is shown in Fig.8.

Fig.8 Composite Component

图 8 复合构件

Just like the atomic component, the composite component interface consists of programming

interface and UI. Developers need to define properties, methods and events in programming

interface and how they are delegated to subcomponents. The composition environment is

responsible for binding the delegations. On the other hand, UI elements of a composite component

consist of the UI of subcomponents. Moreover, developers can give default structure and

presentation configuration to composite component.

4.5 On-the-fly Support

In most web-based service composition environments, the instantiation of a component is done

either design-time or run-time. A design-time component is a fake component without any real

functionality. When developers want to see the execution result of the application, they have to

deploy the application in the specific environment and debug for the desired result.

Our WBS component model does not distinguish between design-time and run-time, while our

composition environment does not follow the design-run-debug cycle. The composition

environment is hosted in a web browser and implemented by JavaScript, which is a dynamic script

language running in web browser. Hence, the environment can load WBS component definitions

without restarting. Also because a WBS component is implemented by JavaScript, a component can

be instantiated without compilation and deployment once its definition is retrieved into composition

environment. After being instantiated, a component is at runtime. It connects with a running service

and can respond to user actions with full functionalities. Since every component is always at

runtime, components can be connected just-in-time when developers assemble them. Service

invocations may be caused by this connection and these invocations may modify component internal

states and UI. That makes be developers able to validate the composition result on-the-fly.

5 Related Work

The web-based service composition has involved a lot related work. In [3][4][5], some

fundamental work about web-based service component were discussed, including the basic WBS

10

component model and event-based composition model, providing a proof of concept

implementation. However, the component model of the work is not suitable for the UI reusability.

Its UI is fixed and hard to be customized. It does not support composite component yet.

Furthermore, this component model cannot be used in on-the-fly composition since it supports

integration of heterogeneous components, such as ActiveX and Java Applet, which separate the

design-time and runtime strictly.

There are many form-based web component models and related frameworks [9][10] that facilitate

building composite web applications. However, these components are form-based. That means any

interaction with these components will cause request and respond to backward server. Therefore it

does not support on-the-fly service composition.

Thousands of mashup applications [7] already exist on the web, which allow users to create web

applications by using widgets. However, in these mashups, UI is described by fixed markup files,

which are encapsulated in widgets and cannot adapt to particular scenario. Furthermore, current

mashup tools do not support on-the-fly composition yet.

Java Portal [8] lets users customize composite pages with full-fledged, pluggable components

called portlets. However UI is always considered as a fixed part in portlets and hard to be reused.

Moreover, Portal explicitly distinguishes between UI components (portlets) and composite results

(portals), it’s hard to support composite component, which means turning a portal to a portlet.

In addition, some work [12][13] and tools (i.e. Microsoft Visual Basic) in CBSD field allow

developers to create applications with visual components. These components encapsulate UI and

functionalities. However, the functionalities of these components do not connect with services but

are implemented standalone. Therefore, these components should be compiled and deployed before

execution, which makes on-the-fly composition impossible.

6 Conclusion and Future Work

The web-based service composition is becoming a popular composition style in Service Oriented

Computing. This paper makes the following contributions. Firstly, we present a well-structured

component model that decouples the UI and service business logic for better adaptation. Secondly,

developers are able to assemble components not only at business logic level but also at UI level.

And our component model supports on-the-fly composition, which provides a quick and effective

feedback way for qualification. Thirdly, the component model supports the composition resul t to be

published as a new component for further reuse.

There are some open issues for our component model. First, our WBS components encapsulate

service and UI. Although there are many services on the web, it is not an easy task to create WBS

components from these services. Hence, a WBS component builder, which helps developers to

create WBS components, is under development and will be open source soon. Second, to adapt

WBS components, developers should write XML configuration by hand now. It makes component

adaptation difficultly. However, the next version of our composition environment will have a more

powerful configuration panel, which allows developers to adapt components in a visual way and

creates XML configuration automatically. Finally, our current model can only support simple

composition logic by providing simple connector and data connector. We are now progressing on

much more complex service composition style, such as business process driven. A new connector

11

type will be provided in our next version.

References

[1] H Mili, A Mili, S Yacoub, E Addy. Reuse-based software engineering: techniques, organization,

and controls. Wiley-Interscience New York, NY, USA, 2001.

[2] Hafedh Mili, Fatma Mili, and Ali Mili. Reusing Software: Issues and Research Directions. IEEE

Transactions on Software Engineering, Vol 21, no. 6, June 1995.

[3] J. Yu et al. A Framework for Rapid Integration of Presentation Components . In the Proceedings

of WWW'07, Banff, Canada, May 2007.

[4] J. Yu et al. Mixup: a Development and Runtime Environment for Integration at the Presentation

Layer. In the Proceedings of International Conference on Web Engineering 2007, Como, Italy,

July 2007.

[5] F Daniel, J Yu, B Benatallah, F Casati, M Matera. Understanding UI Integration: A Survey of

Problems, Technologies, and Opportunities. IEEE Internet Computing, 2007.

[6] Oscar Diaz, Salvador Trujillo, Sandy Perez. Turning Portlets into Services: The Consumer

Profile. Presentation Components. In the Proceedings of WWW'07, Banff, Canada, May 2007.

[7] Merrill, D. Mashups: The new breed of Web app.

<ibm.com/developerworks/library/x-mashups.html>

[8] Java Portlet Specification. <http://jcp.org/aboutJava/communityprocess/final/jsr168>.

[9] Richard Cardone, Danny Soroker, Alpana Tiwari. Using XForms to Simplify Web

Programming. In the Proceedings of WWW 2005, May 2005, Chiba, Japan.

[10] Ito, K. and Tanaka, Y. A visual environment for dynamicweb application composition. HT'03

[11] Girish Chafle, Gautam Das, Koustuv Dasgupta, Arun Kumar, Sumit Mittal, Sougata Mukherjea,

Biplav Srivastava. An Integrated Development Environment for Web Service Composition. In

the Proceedings of IEEE International Conference on Web Services 2007.

[12] Padmal Vitharana. Risks and challenges of component-based software development. Aug 2003,

Communications of the ACM

[13] AI Morch, G Stevens, M Won, M Klann, Y Dittrich, Volker Wulf. Component-based

technologies for end-user development. Sep. 2004, Communications of the ACM.

Zhao Qi was born in 1984. He is now a PhD student in the School of Electronics

Engineering and Computer Science of Peking University. His research directions include

service-oriented computing and software engineering.

赵祺(1984－),男,北京人,目前于北京大学信息科学技术学院攻读博士学位 ,主要研

究领域为面向服务计算,软件工程。

Gang Huang was born in 1975. He received the PhD/MSc degree in computer science

from Peking University in 2003 and Northwestern Polytechnical University in 2000

respectively. He is an Associate Professor in the School of Electronics Engineering and

http://jcp.org/aboutJava/communityprocess/final/jsr168

12

Computer Science of Peking University. His research interests are in the area of distributed computing

and software engineering.

黄罡（1975 年-）,男,湖南常德人,博士,北京大学信息科学技术学院副教授,主要研究领域为分布计算

与软件工程。

Xuanzhe Liu is now a Ph.D candidate in the School of Electronics Engineering and

Computer Science,Peking University. His research interests include Software

Engineering and Service Oriented Computing.

刘譞哲（1980-），博士生，甘肃兰州人，主要研究领域为软件工程、面向服务计算

等。

HUANG Jiyu was born in 1985. He is now a master student in the School of Electronics

Engineering and Computer Science of Peking University. His research directions include

service-oriented computing and software engineering.

黄冀渝(1985-),男,成都人,目前于北京大学信息科学技术学院软件工程研究所攻读硕

士学位,主要研究领域为面向服务计算,软件工程。

