T0804059

Towards a Component Model for Web-based Service Composition.

ZHAO gi', HUANG gang'*, LIU xuanzhe!, HUANG jiyu®

1. School of Electronics Engineering and Computer Science, Peking University; Key laboratory of High Confidence Software
Technologies (Peking University), Ministry of Education, Beijing, 100871, China

+ Corresponding author: E-mail: huanggang@sei.pku.edu.cn

—FhEET Web K ik 25 H 3 AR R

BOLE, BT MR, FEEA

LAEROR 225 BRI A HAR B AT AT Sl 5 A R B #RE s i = Jb Rt 100871

WE: T web KRS AR Ry —MRAT HR I . 2 OA K TR R IR L 552
AT S o — AT web BOMRSSHIME, IFAERET web FOMASE i 410X Sy . X4
PR, CHEMRIE . . URE SNSRI A E R 2 /R A3
S — OB R A R DLSCRF ST web BURSSA1E . 5GP R A St AR 25
AR B RS RS REE . K, TR RN GIANBURT BLAE ML 55 12 S 1) JR O AL 2 X e g £,
IR UALE P FRH R REEAT AL o (RIS R SRR SIEI 2H 20 DA SEBL K A7 R B
UERERC o %A A TR 30 SR 21 2 45 SRR A D — AN (K T SRR 1) e 55 R 1

Regia: 2R MosaAE; R

Abstract. The web-based service composition is becoming a popular composition style in Service
Oriented Computing. Many existing work proposed encapsulating service business logic and User
Interface (Ul) into a single web-based service component and assembling these components in
web-based environment. However, these component models are yet limited in terms of reusability,
especially for component qualification, adaptation and composite structure support. This paper
proposes a component model for web-based service composition. Firstly, we present a
well-structured component model that decouples the Ul and service business logic for better
adaptation. Secondly, developers are able to assemble components not only at business logic level
but also at Ul level. And our component model also supports on-the-fly composition, which
provides a quick and effective feedback way for qualification. Thirdly, the component model
supports the composition result to be published as a new component for further reuse.

Key words: reuse; service composition; mashup

« the National Key Basic Research and Development Program of China (973) under Grant No. 2002CB312000 ([& & £ JE Rl 5T
KIEFEI, 973) ;the High-Tech Research and Development Program of China (863) under Grant No. 2007 AA010301 (5 & % AWF 5%
& J& it %1); the National Natural Science Foundation of China under Grant No. 90612011 ([5 [2k Fl#%:4) ; and the IBM University
Joint Study Program (IBM K22&{ETH) .

mailto:huanggang@sei.pku.edu.cn

1 Introduction

Being one of the key ideas for Internetware, software reuse offers a great deal of potential in terms
of software productivity and software quality [2]. Generally, there are two main reuse styles:
composition-based reuse and generation-based reuse. Composition-based reuse has been more
widely used in practice, such as Component Based Software Development (CBSD) and
Service-Oriented Architecture (SOA). As a target application domain or computing paradigm of
Internetware, SOA allows developing software systems by assembling loosely-coupled, gained
services.

Currently, there are many services published via Internet with open APIs, such as Amazon S3 and
Google Map. Therefore, more and more users are able to access these services through web as well
as assemble them for their own applications, e.g., those so-called mashups [7].

Many existing work [3][4][5][6] proposed encapsulating service business logic and User Interface
(Ul into a single component (called web-based service components, WBS component for short, in
this paper). And then developers can create applications in web-based environment, such as web
browser, in a more interactive manner. However, there still have many limitations in current WBS
component model, especially for component qualification, adaptation and composite structure
support.

Given a set of components, and a schema for assembling them, qualification is to check the
proposed composition satisfies a given set of requirements [2]. Unlike traditional off-the-shelf
components that need compile and deployment, services are actively running entities [11]. Such a
significant difference makes service composition “on-the-fly” with immediate reaction. And that
gives a quick and effective feedback way for qualification. First, a service can be invoked without
deploying it and the result will be returned immediately. Therefore developers can qualify the
service on the fly. Second, since services can be assembled and invoked just-in-time, developers can
retrieve the real-time “execution result” of service composition once they assemble some services.
Accordingly, the service composition can be qualified on-the-fly. In briefly, qualification can be
carried out simultaneously with on-the-fly composition. However, the on-the-fly ability is not well
supported in current WBS component models.

If retrieved components are sufficiently “close” to the requirements and are of sufficient quality,
developers should adapt them [2]. WBS components encapsulate Ul, while Ul is the most variable
element considering the fast evolving composition context. For example, a Scenic-Spots List WBS
component may invoke a remote service to get scenic-spots data and display it in a list. When this
component is used individually, the list is necessary for displaying data. When it is composed with a
map WBS component, the scenic-spots can be displayed on the map and the scenic-spots list
becomes useless and redundant. However, in most current WBS component models, such as current
mashups, Ul is described by fixed markup files and cannot be modified. On the other hand, WBS
components also include some interaction logic which manipulates the relationship between Ul and
services. However, the interaction logic and Ul in current WBS component models are tightly
coupled. Hence, once Ul is modified, the interaction logic will break down. In other words, these
component models are not able to adapt flexibly in different scenarios.

Moreover, composite component is important in reuse, which allows developers to publish the
composition result as a new component for further reused. In SOA, composite component is also
one of the core principles and supported by the most process-based service composition, such as

Business Process Execution Language for Web Services (BPEL4WS). However, current WBS
models do not support composite component yet.

In this paper, we present a novel component model to solve the above reusability limitations in
web-based service composition. This component model is easy to adapt within different scenarios,
supports on-the-fly service composition and composite component]1.

The rest of this paper is organized as follows. Section 2 illustrates a sample scenario to explain the
problems in web-based service composition we mentioned above. Section 3 gives an overview of
our approach. Section 4 provides the details about component model. It also presents how it
supports composite component and on-the-fly composition. Finally, we discuss related work in
Section 5 and conclude in Section 6.

2 Motivation Scenario

We begin with a typical scenario to explain the problems in WBS composition mentioned above.
This scenario is the development of a City Tourist Guide, as shown in Fig.1. In this scenario, there
are three WBS components: A City Scenic-Spots List, which lists scenic spots of a selected city; an
Image Searcher which searches and displays images by keywords; a Google Map which displays
locations of given addresses. The City Tourist Guide requirement is that scenic spots of this city
should be displayed on the map with images when a city is selected. It can be implemented by
assembling the three components.

Tian Anmen Square

B)Image Searcher

A) Google Map
Beijing, China ¥
5 Badaling Great Wall ™% Baivun Guan 5 Beihai Park
Bivun Si 5 Forbidden City = Guozifian

= Jietai Temple Jingshan Park Jndong Amusement Park

b - Mangshan National
Juvongguan Pass Lu Gou Bridge Forest Park

Miaofeng Mountain ™ Mutianvu Great Wall Peking Man Site
ShiChahai = Shidu ¥ Simatai Great Wall
Tantuo Temple ¥ The Ancient Observatory 5 The Fragrant Hills

 The Great Bell Temple % The Ming Tombs 5 The Summer Palace

S The Temple of Heaven 5 Tian'anmen Square 3 Yonghegong

= Yuanmingvuan Zhongshan Park = = 7
D) City Tourist Guide

C) City Scenic-Spots List

Fig.1 Motivation Scenario
B 1 b

In this scenario, we can find the problems mentioned above. First, the geo-data of scenic-spots

1 A prototype is open source at http://sourceforge.net/projects/imashup/

http://sourceforge.net/projects/imashup/

and map may be mismatch, which makes location markers display at wrong places. In traditional
composition environment, this mismatch cannot be discovered until the application is deployed.
However, the on-the-fly capability makes developers be able to find the mismatch once the two
components are assembled. Second, the Ul should be able to be customized and assembled together,
which means the images should be nested in the maps location markers and redundant Ul elements
(i.e. spots list and keyword input of Image Searcher) should be removed. Finally, composition result,
the city tourist guide, may be further integrated with other components, such as an airplane ticket
booking component. Current WBS component models do not support composite component.
Therefore developers cannot use the city tourist guide as a WBS component but should assemble the
three components again with the airplane ticket booking component.

3 Approach Overview

In this section, we give a brief overview of our approach, which is briefly illustrated in Fig.2. The
Fig.3 is a snapshot of assembling the city tourist guide in our composition environment. The left
part displays the composition result, while the right part is the management panels which allow
developers control the components.

Adaptation Qualification
(\WBS On-The-Fly Composit:'on\ WBS Cﬂm
Components Composition

V-_____‘_‘_-_

Composite Component Publication

Fig.2 Approach Overview
B 2 5B

) Nozilla Firefox
Itk F) &EE OB FE) ME B deliciens BE B IE T FH

| [} £ile:ff/E:fPr.. . positor.htal[| -

Global Ul Structure Configuration

Gl class= comp_contarner’ > A Component Searcher
component-rd="Irzei”
nawe="ci tsselertion’ /> All Common Data Search
Givr *ahoo GoogleMap Praducts
{span rlass="clear_element’ /> — _—
{drv elass="comp_container’ GoogleMap - 2dd
fedemen’ - glebap - Saki

component-id="n Connectar Manager

L component: component:
conpenent~id=" & Image Searcher Google Map

e

onSearchCompleted plotAddress @Q

(+]

Cormponent Manager
Id Type
Google Map google_map
Image Searcher image_searcher
Scenic-Spots List scenic_spots_list

5 e

FERl Tor Disabled @ (& @ #HEER

Fig.3 Composition Environment
Bl 3 AL

Considering our city tourist guide scenario, developers should firstly use the searcher panel to
search and retrieve three components into environment. The components will be initialized once
they are retrieved. And they will be displayed as A), B) and C) in Fig.1. Next, developer can interact
with these components (i.e. searching some example keywords for images) for qualification. If the
components do not satisfy the requirements completely, they can adapt with the configuration panel.
In our scenario, developers will nest the image in the map and remove spots list and keyword input
of Image Searcher. The adaptation result should be like the left part of Fig.3. And then developers
can assemble the components. Since our component model and composition environment support
on-the-fly capability, qualification is able to be carried out simultaneously with composition. For
example, the scenic-spots list will connect with the Google map. Since on-the-fly composition
support, the geo-data of scenic-spots list will be sent to Google map and location markers will
display immediately once the connection sets up. If the geo-data of two components is mismatch,
the location markers will display at wrong places. Developers can discover it just in time and
modify the connector to resolve it. Finally, developers can publish the composition result as a
composite component for further reuse. In addition, the management panels in our composition
environment are also WBS components. And these components can be removed from the
environment after composition completed. In that sense, our composition environment can be
considered as an incubator, while this composition can be considered as evolving the incubator to
the city tourist guide application.

4 Component Model

Like traditional component models, our WBS component model consists of two parts, interface
and implementation. In contrast with common components, the interface of component model
consists of User Interface and Programming Interface since WBS component model encapsulates
Ul. The Programming Interface exposes business logic of WBS component. WBS components
interact with others by their programming interface. The Ul responds to users’ actions and invokes
the corresponding functions in the implementation. The component model is shown in Fig.4.

// / Tmplementation \

I'sur]molﬁﬁL I)eleé(;u { View R

i
_____ |-
J . Delegate
Programming] [
Interface

-

Fig.4 WBS component Model
& 4 WBS R

4.1 Implementation

The implementation of our WBS component model employs Model-View-Controller pattern so
that presentation and functionality can be coupled in a loose way.

The model implements business logic by invoking a remove service. In the city tourist guide
example, the Image Searcher component’s model part is responsible for calling a remote Image
search service (i.e. Flickr) to find images.

The view constructs and manages Ul elements. An element of Ul can be an atomic HTML element
such as the button of the City Scenic-Spots List component, or a group of HTML atomic elements
such as the scenic-spots list of the City Scenic-Spots List component.

The controller manages the interaction logic between model and view. The controller part consi sts
of several element controllers. Each element controller encapsulates the interaction logic of one
specific Ul element. The Image Searcher component has two element controllers: one is a button
controller which responds to button clicked event and calls image search functionality, the other is
an image controller which gets return image link and displays the corresponding image.

Our WBS component model’s UI can flexibly adapt with different scenarios, because the
controller is divided into several element controllers and the view leaves the capability of
configuring their structure and presentation to developers. We will discuss how to adapt Ul in the
following section.

4.2 Interface

The programming interface exposes the business logic of WBS component. It consists of

properties, methods and events. Properties describe the state of a component and can be queried and
modified. Methods can query and modify the component state. Events notify changes of the
component state. The Image Searcher Component’s programming interface includes “keyword”
property, “clickSearchButton” and “searchIlmages” methods, “onlmageChanged” and
“onSearchCompoleted” events.

An Interface of a reusable component consists of two parts [1]: the fixed part, which consists of
the part of the component that must be used, and the variable part, which depends on the particular
use. Our WBS component Ul makes elements in Ul as the fixed part which is implemented by the
view, while presentation and structure of the elements as the variable part. The structure defines the
elements’ place and their relationship (i.e. parent-child), while the presentation defines the elements’
presentation information such as size and color. A WBS component has default structure and
presentation configurations. When developers reuse the WBS component, they can adjust
configurations to adapt Ul with particular scenario.

The Fig.5 give the City Scenic-Spots List component Ul elements, default structure and
presentation configurations. The Ul elements are described in JSON (JavaScript Object Notation)
format, which is widely used in web-based environment. The structure and presentation
configurations are described by related web standards, XHTML and CSS. This component has two
Ul elements, a city selection and a list. And the default structure configuration puts the selection and
list into two “div” markups. The presentation configuration describes how to display these elements.

/* City Scenic-Spots List Ussr Interface

<!-— Zity Scenic-Spots List Structure Configuration—-»
i

<div class='comp container':>
<element component-id='listl' name='cityselection' /
</ dive
<span class='clear element' I
<div class='comp container':>
<element component-id='listl' name='spotlist' />
</ dive

0L
{ : 'gityselection'},
{ : 'spotslist'}
1
¥

/% City Zcenic-3pots List Presentation Configuration®/
div.comp_container {
hackground: #£LL;
float: H
horder:lpx roh (137, 213, 239):
padding: Spx:
margin: Spx
i
span.clear element {
clear:
i

Fig.5 User Interface and Configurations

B 5 FimSEEX

It should be noted that, another problem is how to adapt the interaction logic while keeping the
component correct when some elements are changed or removed. According to our WBS component
model, Ul elements can invoke proper business logic and respond to return results through a specific
controller no matter where it is placed and how it is presented since the whole controller is divided
into element-combined controllers and the interaction logic is divided to element granularity.
Moreover, if a Ul element has been removed, the specific controller will be removed automatically
while not affect the other Ul elements and controllers as well.

4.3 Component Composition

We define two types of connectors to enable components to interact with others’ functionalities
through programming interfaces, as shown in Fig.6.

Ee 5B B .56

A) Simple Connector B) Data Connector

Fig.6 Component connectors
&6 MfERT

Simple connector enables two components to interact directly. This connector supports a
component to connect its method with another component’s event. Then this component can catch
the event triggered by the other component and invoke the corresponding method.

However, data of multiple components may be in different formats, so that it prevents components
from being connected directly. Data connector can handle data format mismatch. Data connectors
work with the built-in data wrappers which handle specific kinds of data transformation, e.g.
content-filter. Connectors also allow developers to program a function for enhancing their
functionalities, in case that the logic of data transformation is too complex to be handled by built-in
data transformers

On the other hand, Ul composition is relatively easy since our WBS component model gives
flexible Ul adaptation capability. The Ul elements of WBS components will be merged into a new
Ul when developers assemble them. Then developers need to adjust the structure and presentation
configuration of this new UL The new Ul’s configuration is the same as the atomic component UI’s.

The structure configuration of “city tourist guide” is shown in Fig.7. In this scenario, the input and
button of the Image Searcher, along with the display list of the City Scenic-spots List, are removed
from the configuration. Moreover, since the image is displayed in the location marker on the map,
the xml element corresponding to the Image Searcher is nested in the xml element of the Map in the
configuration.

“!=— CZity Tourist Guide Structure Configuration—-=
<div class='cowp container':>

<element component—id='listl' namwe='cityselection' />
<fdive
<gpan class='clear element' =

ar = = camp_con\:alner

<elewent compohnent-id='mapl' nsathe='map'>

<element component-id='imagesearcherl' name='image' />

e

<fdive

Fig.7 Ul Composition Structure Configuration

B7 REFHgEHWEEH

44 Composite Component

When developers assemble the WBS components, they just work against the component interfaces
and do not need to care about the implementations. So making a composition result as a composite

component means developers should define interface of the composition result. The composite
component is shown in Fig.8.

-

Programming
Interface

.

Fig.8 Composite Component
K8 EatH

Just like the atomic component, the composite component interface consists of programming
interface and Ul. Developers need to define properties, methods and events in programming
interface and how they are delegated to subcomponents. The composition environment is
responsible for binding the delegations. On the other hand, Ul elements of a composite component
consist of the Ul of subcomponents. Moreover, developers can give default structure and
presentation configuration to composite component.

45 On-the-fly Support

In most web-based service composition environments, the instantiation of a component is done
either design-time or run-time. A design-time component is a fake component without any real
functionality. When developers want to see the execution result of the application, they have to
deploy the application in the specific environment and debug for the desired result.

Our WBS component model does not distinguish between design-time and run-time, while our
composition environment does not follow the design-run-debug cycle. The composition
environment is hosted in a web browser and implemented by JavaScript, which is a dynamic script
language running in web browser. Hence, the environment can load WBS component definitions
without restarting. Also because a WBS component is implemented by JavaScript, a component can
be instantiated without compilation and deployment once its definition is retrieved into composition
environment. After being instantiated, a component is at runtime. It connects with a running service
and can respond to user actions with full functionalities. Since every component is always at
runtime, components can be connected just-in-time when developers assemble them. Service
invocations may be caused by this connection and these invocations may modify component internal
states and Ul. That makes be developers able to validate the composition result on-the-fly.

5 Related Work

The web-based service composition has involved a lot related work. In [3][4][5], some
fundamental work about web-based service component were discussed, including the basic WBS

10

component model and event-based composition model, providing a proof of concept
implementation. However, the component model of the work is not suitable for the Ul reusability.
Its Ul is fixed and hard to be customized. It does not support composite component yet.
Furthermore, this component model cannot be used in on-the-fly composition since it supports
integration of heterogeneous components, such as ActiveX and Java Applet, which separate the
design-time and runtime strictly.

There are many form-based web component models and related frameworks [9][10] that facilitate
building composite web applications. However, these components are form-based. That means any
interaction with these components will cause request and respond to backward server. Therefore it
does not support on-the-fly service composition.

Thousands of mashup applications [7] already exist on the web, which allow users to create web
applications by using widgets. However, in these mashups, Ul is described by fixed markup files,
which are encapsulated in widgets and cannot adapt to particular scenario. Furthermore, current
mashup tools do not support on-the-fly composition yet.

Java Portal [8] lets users customize composite pages with full-fledged, pluggable components
called portlets. However Ul is always considered as a fixed part in portlets and hard to be reused.
Moreover, Portal explicitly distinguishes between Ul components (portlets) and composite results
(portals), it’s hard to support composite component, which means turning a portal to a portlet.

In addition, some work [12][13] and tools (i.e. Microsoft Visual Basic) in CBSD field allow
developers to create applications with visual components. These components encapsulate Ul and
functionalities. However, the functionalities of these components do not connect with services but
are implemented standalone. Therefore, these components should be compiled and deployed before
execution, which makes on-the-fly composition impossible.

6 Conclusion and Future Work

The web-based service composition is becoming a popular composition style in Service Oriented
Computing. This paper makes the following contributions. Firstly, we present a well-structured
component model that decouples the Ul and service business logic for better adaptation. Secondly,
developers are able to assemble components not only at business logic level but also at Ul level.
And our component model supports on-the-fly composition, which provides a quick and effective
feedback way for qualification. Thirdly, the component model supports the composition result to be
published as a new component for further reuse.

There are some open issues for our component model. First, our WBS components encapsulate
service and Ul. Although there are many services on the web, it is not an easy task to create WBS
components from these services. Hence, a WBS component builder, which helps developers to
create WBS components, is under development and will be open source soon. Second, to adapt
WBS components, developers should write XML configuration by hand now. It makes component
adaptation difficultly. However, the next version of our composition environment will have a more
powerful configuration panel, which allows developers to adapt components in a visual way and
creates XML configuration automatically. Finally, our current model can only support simple
composition logic by providing simple connector and data connector. We are now progressing on
much more complex service composition style, such as business process driven. A new connector

11

type will be provided in our next version.

References

[1]
[2]
3]

[4]

[5]
[6]
[7]

[8]
[9]

H Mili, A Mili, S Yacoub, E Addy. Reuse-based software engineering: techniques, organization,
and controls. Wiley-Interscience New York, NY, USA, 2001.

Hafedh Mili, Fatma Mili, and Ali Mili. Reusing Software: Issues and Research Directions. IEEE
Transactions on Software Engineering, Vol 21, no. 6, June 1995.

J. Yu et al. A Framework for Rapid Integration of Presentation Components. In the Proceedings
of WWW'07, Banff, Canada, May 2007.

J. Yu et al. Mixup: a Development and Runtime Environment for Integration at the Presentation
Layer. In the Proceedings of International Conference on Web Engineering 2007, Como, Italy,
July 2007.

F Daniel, J Yu, B Benatallah, F Casati, M Matera. Understanding Ul Integration: A Survey of
Problems, Technologies, and Opportunities. IEEE Internet Computing, 2007.

Oscar Diaz, Salvador Trujillo, Sandy Perez. Turning Portlets into Services: The Consumer
Profile. Presentation Components. In the Proceedings of WWW'07, Banff, Canada, May 2007.
Merrill, D. Mashups: The new breed of Web app.
<ibm.com/developerworks/library/x-mashups.html>

Java Portlet Specification. <http://jcp.org/aboutJava/communityprocess/final/jsr168>.

Richard Cardone, Danny Soroker, Alpana Tiwari. Using XForms to Simplify Web
Programming. In the Proceedings of WWW 2005, May 2005, Chiba, Japan.

[10]Ito, K. and Tanaka, Y. A visual environment for dynamicweb application composition. HT'03
[11]Girish Chafle, Gautam Das, Koustuv Dasgupta, Arun Kumar, Sumit Mittal, Sougata Mukherjea,

Biplav Srivastava. An Integrated Development Environment for Web Service Composition. In
the Proceedings of IEEE International Conference on Web Services 2007.

[12]1Padmal Vitharana. Risks and challenges of component-based software development. Aug 2003,

Communications of the ACM

[13]Al Morch, G Stevens, M Won, M Klann, Y Dittrich, Volker Wulf. Component-based

technologies for end-user development. Sep. 2004, Communications of the ACM.

Zhao Qi was born in 1984. He is now a PhD student in the School of Electronics
Engineering and Computer Science of Peking University. His research directions include
service-oriented computing and software engineering.

(1984 —), F AL, H AT TAE UK 5 BB A BOR A Be Bk i 22 0, 3 2EE
T T 17 R 551 5, B0 AR

Gang Huang was born in 1975. He received the PhD/MSc degree in computer science
from Peking University in 2003 and Northwestern Polytechnical University in 2000
respectively. He is an Associate Professor in the School of Electronics Engineering and

http://jcp.org/aboutJava/communityprocess/final/jsr168

12

Computer Science of Peking University. His research interests are in the area of distributed computing
and software engineering.

AR (1975 4F-) 35 1R WA N 18, b mtOR 2 A5 BB A HOR 2 B B B0R, 2 200 58 U0 73 A v 5
ST

Xuanzhe Liu is now a Ph.D candidate in the School of Electronics Engineering and
Computer Science,Peking University. His research interests include Software
Engineering and Service Oriented Computing.

XERY (1980-) , A, HINZMA, FEHF AU vEAETRE . i kes it 5
£

HUANG Jiyu was born in 1985. He is now a master student in the School of Electronics
Engineering and Computer Science of Peking University. His research directions include
service-oriented computing and software engineering.

T FLIAN(1985-), 5 AR, H AT T b 5 K25 BAR A EOR S B A AR 5 BT B it
A, 2 B ST AU T) Al 55 T B AR AR

