
A Browser-based Framework for Data Cache in Web-Delivered Service

Composition

Jiyu Huang Xuanzhe Liu Qi Zhao Jianzhu Ma Gang Huang*

Key Laboratory of High Confidence Software Technologies, Ministry of Education,

School of Electronics Engineering and Computer Science, Peking University,

Beijing, China

huangjy07@sei.pku.

edu.cn

liuxzh@sei.pku.edu.c

n

zhaoqi06@sei.pku.ed

u.cn

majzh@sei.pku.edu.c

n

huanggang@sei.pku.e

du.cn

Abstract—Service Oriented Computing (SOC) paradigm aims

at building applications by composing available services over

the Internet. Recently, one important application direction of

SOC is to compose the Web-delivered services (SOAP and

RESTful Web services, RSS/Atom feeds, etc) for new Web

applications (e.g., the Web mashups). Due to the fact that a

number of Web-delivered services fetch data from remote

servers, Web applications might require browser cache in

order to cooperate with the performance issues (e.g. traffic

and latency). However, cache strategies are usually predefined

by service providers and brought into effect by browsers.

Such pattern of cache makes developers, who are exactly

responsible of composing services for Web applications,

hardly customize their own cache strategies according to their

own application contexts. We argue that, these limited cache

strategies may cause unnecessary communications and reduce

user experience.This paper proposes a browser-side cache

framework for Web-delivered services composition. The main

efforts of this paper are as follows. Firstly, our framework

allows developers to customize their own cache strategies,

such as expiration time, cache granularity and so forth.

Secondly, we propose an adaptive technique to adjust cache

strategies dynamically, in order to improve cache

performance. Finally, we evaluate our framework by

conducting experimental studies with the real-world Web-

delivered services.

Keywords-Web-delivered service; composite application;

cache

I. INTRODUCTION

Service Oriented Computing paradigm aims at
composing available existing services for new applications.
Currently, there have been a large number of services
delivered via Web, such as SOAP Web services, RESTful
web services or RSS/Atom feeds

1.
 And a lot more could be

easily discovered via search engines [1]. With the powerful
support of Web technologies, e.g., AJAX (Asynchronous
JavaScript and XML) and RIA (Rich Internet Applications),
these Web-delivered services can be retrieved, accessed and
invoked within the users‘ web browser. More and more
developers are capable of composing the Web-delivered
services to form new Web applications. Such Web
applications, or the so-called Web-delivered composite

* Corresponding Author: huanggang@sei.pku.edu.cn.
1 ProgrammableWeb now has already hosted 1254 (Until April

12nd, 2009) of API entries

applications in this paper, have been flourishing over the
Web and become a very important application direction and
research topics in SOC [2].

Under our investigation, we find that a large number of
Web-delivered services provide functionality for fetching
data from remote servers (e.g., database). Previous
exploratory study [3] has revealed that over 60% of web
services provide data lookup functions. As for the state of
the art, 30 out of the total of 49 eBay services are for
fetching data

2
, and similar distributions exist in other

popular commercial service providers as well.
Due to the vast demand for ―fetching data‖, Web

applications should employ browser cache in order to
improve the traffic and latency issues. To this end, cache
strategies (such as expiration time indicated in HTTP
Header or Meta Tag

3
) are customized by service providers

and brought into effect by browsers
4
. This cache ―pattern‖

applies to not only the traditional Web applications, but also
to most composite applications as well.

However, when composing services, developers may
find that the cache strategy of a service is improper or even
undesirable for their context. And this becomes more
possible when more services are involved in a composite
application. Eventually, the absence of customized cache
strategies might lead to unnecessary communications and
user experience issues. For example, consider three different
developers (A, B, C) have leveraged the Google weather
service to build composite applications. The service is
assigned a ―no-cache‖ strategy by the provider, as Google
might consider the result is very time sensitive. While this
cache strategy works well with developer A in a real-time
context, it might be inappropriate for the others. Suppose
developer B employs the result to feed other services which
care less about the weather accuracy. And suppose
developer C only needs to extract the temperature for today
from the response, which varies little and should be cached
separately and longer. In other words, B desires a cache
strategy which refreshes the entire response less frequently,
while the developer C calls for a strategy that would cache
on basis of fine-grained structures within a response.

2 eBay API, http://developer.ebay.com/products/overview/

3 HTTP/1.1, http://www.w3.org/Protocols/rfc2616/rfc2616.html

4 For example, Twitter.com sets the expiration date to ―Tue, 31
Mar 1981 05:00:00 GMT‖ in http://twitter.com/statuses/show/id,

which indicates the cached data is always invalid.

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://twitter.com/statuses/show/id

Nonetheless, according to Google‘s original cache strategy,
users might not leverage any cache data in all above cases.
Therefore, both of the clients and servers are associated with
unnecessary communications.

A scrutiny of the example urges the necessity for a new
cache pattern—to enable developers to customize their own
cache strategies. Within the cache strategy, they could set up
expiration time, cache granularity and so forth. On the other
hand, most current Web applications cannot meet such need,
since browsers always execute cache strategies specified in
HTTP Head or Meta Tag from service providers (e.g. IE

5
,

Firefox
6
). Besides, popular Mashup tools have done little

work in providing cache strategies for developers [4] (e.g.
Yahoo Pipes

7
and so on). Consequently, two issues are

raised. First and foremost, both clients and servers are
associated with unnecessary communications. For example,
browsers might make redundant invocations according to
inappropriate cache strategies. Secondly, user experience is
affected, such as making calls to unreachable Web-delivered
services according to providers‘ cache strategies.

Challenges to implement the new cache pattern are
threefold. Firstly, in order to incorporate more flexibility for
developers when configuring strategies, it might be
appropriate to cache on basis of fine-grained structures
within responses. Reusing duplicate data among these data
structures could be tough work. For example, different
weather services might assign different names for the data
structure of ―weather forecast‖. This makes it ambiguous to
reuse this data when sending requests to either of the
services. Secondly, since cache would be done on these
fine-grained structures, it is vague to determine a hit on such
structures merely by the request URL. Finally, if the
expiration time of the strategy could adapt to user behaviors
(including hit-ratio and access-frequency) we could achieve
a better performance. Though this seems natural, to find a
sound adaptive model is challenging. For a better illustration,
suppose two examples and their potential solutions. Firstly
consider a case about hit-ratio, if a user sends 1000 different
requests to the same web service. This leads to 1000 times
of cache miss and unnecessary memory occupation. To
solve this, our cache framework might set a threshold value
of hit ratio, while low hit ratio is associated with disabling
the cache and vice versa. This threshold value relies heavily
on the adaptive model and must be tested with empirical
experiments. As for the influence of the access frequency,
what happens if users access some data too frequently?
Obviously, hit-ratio would then change dramatically and
lead to unstable performance. So we have to figure out the
covert relationship between the two and make the expiration
time adapt to them.

Depending on the location of the composing resides,
caching could be achieved either on server-side or the
browser-side. Within this paper, we mainly target at the
latter case, and we treat the realization of the server-side

5 Cache in Internet Explorer,

http://support.microsoft.com/kb/263070/en-us

6 Cache in Mozilla Firefox,
http://www.mozilla.org/projects/netlib/http/http-caching-faq.html

7 Yahoo Pipes, http://pipes.yahoo.com/

runtime as our future work. We propose a browser side
cache framework to enable the developers to customize their
own cache strategies. The framework is integrated in our
previous work—a browser-based composition tool called
iMashup [10]. iMashup is a client side tool to compose
Web-delivered services. It consists of a component model
for separating service business and user interface, and a
composition environment to compose Web-delivered
services on-the-fly. Within iMashup, our cache framework
assists developers to bind data models with Web-delivered
services, and to make their own cache strategies for data
models. Subsequently, the framework takes over clients‘
requests, and applies the cache strategies to data models.
The evaluation substantiates that our framework improves
the traffic and latency issues, and enhances user experience.

This paper is organized as follows: section 2 discusses a
motivating example, which is later referred to in the
approach overview of section 3. Section 4 is the
implementation of our framework and section 5 is for an
evaluation study. Final conclusion and future work are
discussed in Section 6 and 7.

II. MOTIVATING EXAMPLE

Figure 1. Notebook Seeker

To begin with, we might look at a ―Notebook Seeker‖
Web Application. This application would check out all
available notebook Providers‘ retail addresses, shipment
dates, and prices. It leverages the following three Web APIs:
Amazon eCommerce, eBay and Google Maps.

―Notebook Seeker‖ processes data in the following
sequences. Firstly, users input a range of location (e.g. 1000
Miles) around his/her home. Secondly, the scripts on the
web page would send inquiries to both the eBay and
Amazon APIs, each of which responses a list of notebook
providers with addresses and prices. Thirdly, based on the
location information from the list, all providers are
displayed on the Google Map on the webpage. Finally,
when users click on one marker on the Google Map, an
information box is popped up with the details of the
provider retrieved from the corresponding services. The
responses from the services have the following structures.
When requesting the list of notebook providers (denote this
service as the ―list service‖), the user receives a response
result compromising an array of desirable providers. When
requesting the detail information (denote this service as the
―detail service‖) as clicking on a marker, the user receives

http://support.microsoft.com/kb/263070/en-us
http://www.mozilla.org/projects/netlib/http/http-caching-faq.html
http://pipes.yahoo.com/

an elaborated description compositing name, address and
price for the provider.

The service providers of eBay and Amazon determine
the cache strategies in the scenario. Both of the strategies
require that the refresh is executed on every request, and the
cache is executed on basis of the entire responses. However,
when implementing the application, the developer needs
such a cache strategy: refresh is not necessary within one
minute from last response and cache could be done on basis
of notebook providers.

Such scenario would induce concerns as follows.
Consider if the user has a low speed of connection to the
Internet, he/she has to communicate with the servers at
every request since service providers require him/her to do
so. Moreover, if the user is only concerned with the prices
and addresses of the notebook providers, then the content of
―detail service‖ is by this means a subset of the ―list service‖.
If the detail service is unreachable, when the user click on a
marker to view the detail, he/she gets nothing without
utilizing the cached response from ―list service‖. Both of the
above should be resolved by incorporating customized
cache strategies from developers.

III. APPROACH OVERVIEW

Figure 2. Data Model and Cache Strategy in iMashup

As described in the motivating scenario, a feasible
solution is to enable developers to customize cache
strategies in a browser-side framework. The design of the
framework is independent of language, and could be
incorporated easily in various composite application tools
such as [5] [7]. In this paper, the implementation of the
framework is realized in iMashup in order to facilitate the
demonstration of our approach. Figure 2. shows the general
architecture of our framework. We define the basic unit of
component models in the browsers, which encapsulate both
the application logic and UI. After building the component
models from the data or logic of services, programmers
need to build up data models and the corresponding cache
strategies. This process is only required for those
components the developers need to cache. The rest of
components which should not be cached (as illustrated on
the right side of the figure) would be left alone. When
executed at run-time in Web browsers, everything including
validation is transparent to developers.

When building the data model within a component, as
illustrated in Figure 2. , developers are required to do two
things: binding Web-delivered services with data models,
and setting up cache strategies for models. We believe the
data centric approach during the binding process is suitable,
since there are many previous work in separating data
transformation logic and I/O concerns in composite
applications such as Reo [6].

 Binding services with models: binding is a
customization process. Through our framework,
developers select the desired properties and map
them into data models. This is a one-to-many
mapping because a service could be perceived as
various presentation forms. After the mapping,
developers set up data fields, which sources from
the original services. The last step is to decide the
primary keys for the model, which are used as the
criterion for indexing. For example, the city name
could be the primary key of the weather service.

 Setting up cache strategies for models: aside from
the pure data, every data model has to carry an
additional property (we denote it as Meta-Property)
which includes the caching strategies. Developers
would set up most parameters in the Meta-Property,
including data type of data fields in the models and
cache strategy. The cache strategy includes but not
limited to enable/disable cache, expiration, the time
since last access, entry time and access frequency as
discussed in [9]. In our framework, the first two
should be assigned the initial values by developers,
and the others are covered by the framework. For
example, developers might assign ―enable cache,
expiration time of 5 minutes‖ as the default policy
to a model, and our framework would compute
other strategies in an on-the-fly manner. After the
above two steps, all the models and corresponding
cache strategies are ready to apply.

At run-time, as illustrated by Figure 3. , our framework
cache data models automatically. To this end, it follows
these steps.

 Intercepting user requests: to take over all the
necessary requests, it is necessary for developers to
redirect their requests to our framework. On the
other hand, all the requests otherwise would not be
affected. By this means our framework brings more
flexibility to developers. After intercepting the
requests, some logical operations are performed to
convert the requests into attribute-oriented queries
(Attribute Op Value) to the instance repository. This
repository is a hash table in realization.

 Querying the instance repository: when a request is
invoked, all the related instances are checked for a
cache hit. This process is executed on both the
desired data model and all the related models—as
the desired data model might be contained by other
data models. Judging the hit is accomplished by
comparing request parameters in the target URI
with primary keys of every model, which are
specified once building data models. If an instance
is hit, our framework returns the desired model

SOAP Service RESTful Service RSS/Atom Other Services

Web-delivered Service

Web Browser

Composite Application

Cache
Strategy

Data
Model

Instance Repository

iMashup
Bind

Assign

Instantiate

Cache
Strategy

Data
Model

Cache
Strategy

Data
Model

ComponentComponent Component

Application Programming Interface

Associate

Component

instance. If no hit produced, our framework
proceeds to the next step for inquiries.

 Inquiring and caching: the URI for remote servers is
specified in each data model. Therefore, the service
calls are automatically done and are totally
transparent to developers. Our framework would
call the remote services, parse and store the
generated instances to instance repository, and then
invoke the callback function specified by users.

Figure 3. Cache Framework at Run-time

For our scenario, the general process of using our
framework is as follows. In the first step, we build
components for all services, and then bind the list service
and the detail service of eBay and Amazon with models. In
the models, the ―list model‖ contains an array of the ―detail
models‖. In the cache strategies, an expiration of 30 minutes
is set up for models. Subsequently, during the run-time, all
models are instantiated and stored in the instance repository.
Therefore, both of the ―list‖ and ―detail‖ models would
reuse these instances in the following cases. First of all,
users do not need to communicate with servers when they
are sending identical requests within the customized
expiration time. Secondly, when fetching the providers‘
detail information, all instances of the detail model and all
instances in the minor structure of the list model would be
searched.

IV. THE CACHE FRAMEWORK EMBEDDED IN BROWSER

A. Principles of Implementation

For all Web-delivered services with well-structured
responses, we claim that each of their responses
compromises either an object or a collection of objects. The
types of responses could be classified as

 ,...2,1,0| iobject i or LT (list type), and
object

or
OT (object type).

Based upon the above, when two service calls are
invoked sequentially, there are five cardinal cache cases
where the framework could provide cached data from the
first call to feed the second request. We denote these cases
as cache cases in the rest of this paper.

 Identical. The second request has the exactly same
URL and parameters with the first one. It is the
classical case of cache.

 List-Object:
 ki objectiobject ,...2,1,0|

.
This case comes when the OT response is contained
by LT. Imagine the first service is to return a list of
10 bestsellers, while the second one is to return the
most popular book. Then second response is
included thoroughly in the cache from the first
response.

 Object-List:
 ,...2,1,0| kobjectobject ki .

If an OT response is a composite data structure with
a list structure inside, then the following LT call
might reuse the overlapping data. For instance, the
OT is a description for a person. Within the
description, there is a list of his/her friends.
Therefore, after retrieving the person‘s description,
all requests for his/her friends might benefit from
cache.

 Object-Object: ki objectobject
. This is the case

when users send OT requests for different integrities
of the response. Suppose if the first call is for
detailed information of a person with ID and
description, while the second call is only to retrieve
the person with his/her ID.

 Object-Object:

 ,...2,1,0|,...2,1,0| kobjectiobject ki .
This is the case when users send LT requests in
different scopes. Suppose if the first call inquiries a
collection of 10 bestsellers from Amazon, and the
second call is for the top 5.

The four cache cases facilitate our realization as stated in
the following.

B. Realization of Cache

The response type and cache cases of a Web-delivered
service are set up in the data model, when building a
component. During this process, developers assign an
XPath

8
expression for every data field indicating how to

parse it. After that, developers need to decide the primary
keys in a model for model comparison. Then, the response
types (LT/OT), cache cases, the other party in each case for
the model are specified as well.

In our framework, a match is achieved based on a strict
URL comparison. When a request comes, our framework
looks up its corresponding data model according to the URL
pattern. After that, the framework needs to determine all
related data models to be searched in the instance repository.
The processing logic for different cases is discussed as
follows.

 The first four cases discussed in the previous
section would be handled automatically and
uniquely, which is (1) to retrieve the data model of
the other party in such relationships; (2) to search
instances of the data models in (1) in the repository;

8 XPath, http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath

 The last case (one list contains another) is more
complicated. We demand all developers to supply
an extra query interface for such a LT model (only
for models involved in such a cache case). In that
query interface the programmers should explicitly
indicate how to query related models. For instance,
if a LT model is to return a list of books from
Amazon, it should embody a query interface which
takes the start and end indices as parameters to
return the ―slice‖ list. Therefore, after caching a list
of ―top 100 books‖, a subsequent inquiry for a list
of ―top 30~top 50‖ books could be handled by this
inquiry interface with desired results.

When searching all related data models, judgment for a
cache hit is realized through primary keys and the parser
logics specified in the model. If not matched or the instance
is stale, our framework would make the remote call and
return to users after the server responds. Otherwise, a hit is
achieved and the matched instance is returned.

The Meta-property in the data model consists of:

 Data Type: The data type declares data type for
each property in the model to facilitate the inquiries.
It could be either simple data types (date & time,
float, object, string etc.) or complex data types (such
as other data models).

 Cache Strategy: The cache strategy is employed to
achieve expiration and replacement. Currently, we
support the following policies in the strategy:

TABLE I. THE CACHE STRATEGY OF THE META MODEL

Policy Name Implementation

Time since Last Access

(TLA)

A timestamp for the last access

Entry Time (ET) A timestamp for instantiation

Frequency of Access

(FOA)

A number to keep on counting the

frequency

Expiration A timer for validity of the model or data

fields

In the above table, the expiration field and ET determine
when cached data items are expired. And TLA and FOA
determine the target for replacement when repository
exceeds the size limit.

Our framework sets up the above Meta model for each
data model. During run-time, after the instantiating of every
model, a countdown timer is initiated to time the expiration,
which triggers the framework to invalidate. The models are
requested again according to users‘ need.

C. Adaptive Cache

Users access the cached data irregularly, so a fixed
expiration might be inappropriate over the time and then
affect the whole system‘s performance. On one hand, if the
expiration is too short-lived, the hit ratio will be low and the
system must send more queries to the services, wasting
more resources. On the other hand, if it is too long, users
have to use the stale results, making the data less reliable.

Moreover, many factors contribute to the changes of the
cache. These factors come from both the user behaviors and
service behaviors. For the user factors, hit-ratio and access
frequency would refine the expiration time. As for the
services factors, the update frequency of services would

update cache as well. For example, some services change
their results by seconds like services fetching stock prices or
messages, while others just return the same result most time
we invoke it. Though tempting to include all factors, we
ignore the service ones in a client-side framework.

Thus, we propose an improved cache strategy. In this
strategy, our framework would compute the desired
expiration time by an algorithm for users based on hit ratio
and access frequency. The algorithm run on changes of
these two factors, which includes the following occasions:

 Users access the cached data, which returns either a
hit or a miss. So the hit ratio is changed.

 Users access the cache either more ―quickly‖ or
―slowly‖, which in turn alter the access frequency.

The algorithm borrows the idea of the simulated
annealing algorithm [14], but differs from it in addressing
the requirements of finding the most appropriate expiration
time for users. In this strategy, expiration time adapts to
users dynamically according to the hit ratio and users‘
behavior in the history (access frequency).

The estimated value Vi denotes the expiration time for
each cache item Ii. We denote Va for a threshold value,
then Vi is calculated as below.

Formula 1:

iV
=

)(,

_

VaViife etemperatur

ratiohit

 (1)

iV
 =

 VaViifNA ,

The variables in formula (1) are explained as the
followings.

 Variable hit_ratio denotes the percentage of the hit
times from all the visiting of cache item Ii. We
enlarge the influence of hit_ratio by multiplying it
by a constant , which is assigned to 1000 in the
implementation. The higher the hit_ratio‘s value is,
the larger the expiration time value will be. This is
what cache is designed for. It is also reasonable to
simply enlarge the expiration time to make the
cached data be effective for a longer period of time.
In contrast, if the hit_ratio is small, it means that the
current cached data has little merit to be visited
again, indicating more potential to become stale. In
this case, we should assign shorter expiration time
to cut down the data‘s lifespan. Since an extreme
short expiration makes the cache little use, we set
up a threshold value and would turn off cache when
the expiration drops below it.

 Variables temperature denotes the sensitivity for the
expiration time to change with hit_ratio. In addition,
it essentially reflects the current frequency of
accessing the services. The user may use the same
query to visit the same service many times very
quickly, causing hit_ratio to increase remarkably if
it is very sensitive. Oppositely, if user doesn‘t use
the service quite often, we cannot get enough
experience to adapt the expiration. As a result, the
sensitivity should be adapted based on the
frequency of accessing.

During the annealing process, temperature is adjusted as
follows:

Formula 2: Let ‗T‘ be the temperature and minT be its
lower bound. Let ‗Foa‘ denote frequency of accessing by
users, and ‗theta‘ be the mean value of Foa. Then:

})(,{min 2 FoaTMaxT (2)

This formula states that temperature is increased when
frequency of accessing goes extreme and decreased when it
reaches its mean. However, the sensitivity of the expiration
time cannot be too small, which leads to an extreme
occasion. So we manually define a lower bound to limit it.
The annealing process ends when temperature drops to
minT. Foa‘s increase means that all the services will have
more chance to be visited in the period compared to normal.
In this case, if the expiration time is seriously influenced by
hit_ratio, it might get a very large value like 1 year or fall to
a very small value like 0.1 second, both of which are
unreasonable. So we must increase temperature to decline
the influence of hit_ratio. On the opposite side, if Foa is too
small, it might cost the system a long time to collect enough
information to adapt the expiration time to the best. In this
case, we must decrease temperature to add the influence of
hit_ratio. In a word, temperature should be positively
affected by frequency of accessing.

V. EVALUATION

To demonstrate the contribution of this paper, we have
conducted an experiment that highlights the usability and
effectiveness of our framework. The first evaluation is done
without the adaptive approach (so we set the expiration as a
constant). Then, we incorporate the adaptive approach to see
a further cache enhancement in action.

A. Evaluation of the Scenario

To come up with a comprehensive evaluation, we
implement the case discussed in our motivating scenario
with the following Web-delivered services: eBay Shopping
API, Amazon and Google Map. The demonstration is run in
Firefox 3.0.10.

Via our framework, we build the following data models:
two LT models and two OT models for the two shopping
services, and one OT model for Google Map. We assign the
following cache cases for them: LT and OT models of the
shopping are assigned with the cache cases of ―Identical‖
and ―List-Object

 ‖. The
OT model of Google Map is simply a marker service, thus is
assigned with the cache case of ―Identical‖. We also make
our own cache strategies as discussed previously—refresh
for all models is not necessary within thirty minute from last
response, and the cached data should be validated
automatically after that. We run the evaluation against the
scale of requests to reflect the fact that a composition
application could be published and accessed heavily.

The evaluation is done by writing a script which
randomly invokes requests on behalf of a user. To better
ponder the validation, our script would pause 5 seconds
between every two requests. We record the outgoing
requests versus the increase of requests with and without our
framework. It is worth noting here the memory consumption
of the framework is dependent upon the practical data of
cases other than the framework mechanism, thus it is not
included in the evaluation.

Figure 4. Requests to Remote Servers Comparison

The first evaluation is to evaluate the efficiency of the
framework. The X axis refers to the total number of requests
invoked from users, and the Y axis refers to the requests that
are actually made to servers. More requests are replied from
caches as the requests rise. This is due to both the ability to
cache and data reuse in OT models of shopping. The same
cases happen in reality when users prefer to quickly browse
all available providers while going back and forth
periodically. Moreover, if the strategy conducts the
validation less frequently, requests to servers would further
decrease.

Figure 5. Hit Ratio of the Framework

The second evaluation is to evaluate the performance of
the framework. The X axis takes the same meaning as above.
The Y axis in the left chart refers to the number of hits to the
total number of requests from users. The above results
reveal the following observations.

 The hit rate starts highly for even small scale of
requests. This is due to the concrete behavior of the
script and the specific scope of this application.
Since the descriptions of the providers seldom
change over a long period of time, our framework
incorporate obvious improvement over the
otherwise;

 The hit rate rises slightly as the size of requests
increases, while sliding down a bit around 32%. The
increase of hit rate comes from the increase of
available instances. And the decrease is because
some instances become out-of-date and require
validation, which would diminish the hit ratio by
missing requests while validating these models.

From the evaluation above, we demonstrate that our
framework has a sound performance in exerting the cache
strategies from developers. And under appropriate strategies
which balance the traffic and validity well, the
corresponding composite applications would benefit from
the framework without burdening too much on traffic.

B. Evaluation of Adaptive Cache

We have firstly conducted an independent experiment
from the one above, in order to find out how our algorithms
in IV.C changes the expiration time, so it would adapt to
users‘ behavior. After that, we then add the adaptive
approach to the scenario to gain a further improvement.

We have implemented a web application that calls only
one web service. There is a script invoking the service on
behalf of the users with irregular access frequencies and
different parameters (from a parameter collection that is
large enough). We have timed the process and recorded the
following factors: frequency of access (Foa), hit-ratio,
temperature and Vi. The records have the unit of 10 times,
and the time internal is 2 minutes.

The first step of the experiment is done without the
adaptive cache. We generate a series of requests (denoted as
R0) irregularly, which means the frequency of invocations
would change in some period of time.

Figure 6. Hit Ratio against Time Without Adaptive Cache

From the figure, we could find out that there is a
dramatic fall of hit-ratio at Point A and also an increase at
Point B. The reason is around the period of A, users send
too many requests with different parameters, which lead to
significant cache miss. While in the period of Point B, users
just send identical requests which increase the hit-ratio. As
discussed previously, our approach should alleviate the
dramatic expiration change at both Point A and B. And we
should also allow expiration to change much more quickly
around other time.

Then, we turn on the adaptive method, send the exactly
same requests R0 in the same order and frequencies, and
obtain the following data about temperature.

Figure 7. Temperature against Time

According to Formula 2, temperature is affected by Foa.
From the graph we can observe that around the period of A
and B, temperature rises significantly due to the large
quantity of requests. And according to Formula 1, since high

frequency results high temperature, which ―slows down‖ the
process of ―annealing‖, we expect the Vi to drop smoothly
at the Point A and increase smoothly at Point B. At other
points, temperatures are rather low so Vi should change
quickly.

Finally, we check the resulting expiration time (which
has a linear conversion from Vi) from the impact of
temperature.

Figure 8. Vi against Time with Adaptive Cache

From Figure 8. and formula 2, we are generally more
concerned about how Vi perform at A and B among all the
dots. The relatively small decline at A shows a desirable
result, which shows our approach keeps the expiration stable
when too many cache miss occur. In this way, if we set up
the threshold value of Va as level of A, the framework could
turn off the cache to reduce the unnecessary memory
occupation. The same effect could be observed on the
smooth increase at Point B. On the other hand, the
fluctuation on the left segment of the curve shows our
annealing algorithm changes the expiration time relatively
quickly at a lower temperature. This makes sense to find the
desired expiration quickly without too many history data.

Consequently, we run section V-A again with the
adaptive cache on. The comparison of the requests is as
below:

Figure 9. Requests to Remote Servers Comparison(2)

From the experiment above, we show that the adaptive
cache and the annealing algorithm suit some scenarios
rather well. It guarantees the stable changes of expiration
time, and encourages quick adaption at the inception of
scenarios.

VI. DISCUSSION

There are the following open issues of our framework.
First of all, though the framework is proposed to cache

all kinds of Web-delivered services, it might be improper
for some exceptions. For instance, the data size of some

service responses might be extremely large. And if these
data is referenced frequently, the framework would place
the data in the memory. This might lead to high memory
consumption and slow reaction of the applications. For such
cases, our framework might not be so effective in caching
service responses.

Secondly, our framework is implemented on the
browser-side. The use of it might be restricted for server-
side applications because many developers compose
services on the server-side and provide the final web pages
to users. To enable caching for these applications, the
framework should bear a server-side implementation. Since
the mechanism and the run-time environment are loosely
coupled in our framework, it might not be tough work to
realize such an environment.

VII. RELATED WORK

The concept of semantic cache is proposed to reuse the
overlapping cache data with the help of the semantic
knowledge of the data [12]. The semantic cache focuses on
how to exploit the semantic information within the query
and how to use this information for the future reuse [13].
We commonly believe semantic cache is a very desirable
reference for our framework. Because data models with
semantics are similar with result sets in semantic cache, and
the algorithms for classifying, reusing and replacing [11]
could supplement our relatively simple models here.
However, it is also worthy to note that semantic information
in responses from Web-delivered services are more variable
and complicated than the query-based responses (usually
expressed as name-value pair) of semantic cache. Thus our
framework differs from it in scope and approaches.

Depending on the hierarchy differences, there are two
kinds of browser-side cache. The first kind is to cache on
the data tier, such as the browsers‘ built-in cache or cache
modules in the browser add-ins (e.g. Runtime Shared
Libraries in Flash [15]). This sort of cache would map URLs
to content according to HTTP/1.1. A number of elements in
the HTTP HEADER are included to direct cache behaviors,
which are specified by service providers. The second kind
resides on the application tier, which are usually embedded
in client side JavaScript frameworks [8]. Nevertheless,
popular JavaScript frameworks such as DOJO

9
and DWR

10

merely cache the data on basis of the entire Web pages or
responses, providing inadequate flexibility for developers.

VIII. CONCLUSION

The composite applications from Web-delivered
services are proliferating on the Web. Most of them are
employing a cache pattern with little support to customize
developers‘ own cache strategies. Our framework fills such
a gap and makes the following contributions.

We propose a cache framework to support developers to
make cache strategies when developing composite
applications. These strategies include the granularity of
cache, expiration time and so on. We also propose an

9 DOJO, http://dojotoolkits.org

10 DWR, http://directwebremoting.org/dwr/index.html

adaptive approach for strategies. Therefore, in terms of
developers, they get more flexibility when developing
composite applications. While in terms of end users, they
get customized cache behaviors which improve the cache
efficiency.

IX. ACKNOWLEDGEMENT

This work is supported by the National Basic Research
Program of China (973) under Grant No. 2009CB320703;
the National Natural Science Foundation of China under
Grant No. 60821003, 60873060; the High-Tech Research
and Development Program of China under Grant No.
2009AA01Z116; and the EU Seventh Framework
Programme under Grant No. 231167.

REFERENCES

[1]. Eyhab Al-Masri and Qusay H. Mahmoud, Investigating Web

Services on the World Wide Web, WWW 2009

[2]. Jin Yu et al. Understanding Mashup Development, IEEE Internet

Computing, 2008

[3]. Yan Li et al. An Exploratory Study of Web Services on the Internet,

IEEE International Conference on Web Services, 2007

[4]. Volker Hoyer and Marco Fischer. Market Overview of Enterprise

Mashup Tools, International Conference on Service Oriented

Computing, 2008, LNCS 5364, pp. 708–721.

[5]. E. Michael Maximilien et al. A Domain-Specific Language for Web

APIs and Services Mashups. International Conference on Service

Oriented Computing, 2007, LNCS 4749, pp. 13-26.

[6]. Ziyan Maraikar, Alexander Lazovik and Farhad Arbab. Building

Mashups for the Enterprise with SABRE. International Conference

on Service Oriented Computing, 2008, LNCS 5364, pp. 70-83.

[7]. Michael Pierre Carlson et al. Automatic Mash Up of Composite

Applications. International Conference on Service Oriented

Computing, 2008, LNCS 5364, pp. 317-330.

[8]. G. Barish and K. Obraczka: World Wide Web Caching. Trends and

Techniques, IEEE Comm. Magazine, Internet Technology Series,

2000, pp. 178-185.

[9]. Wei-Guang Teng et al. Integrating Web Caching and Web

Prefetching in Client-Side Proxies, IEEE Transactions on Parallel

and Distributed Systems, vol. 16, no. 5, May 2005

[10]. Qi Zhao et al. A Web-based Mashup Environment for On-the-fly

Service Composition. 4th International Symposium on Service-

Oriented System Engineering (SOSE 2008), pp 32-37. Dec. 18-19.

[11]. Y. Arens and C.A. Knoblock. Intelligent caching: selecting,

representing, and reusing data in an information server, Proc.

CIKM‘94 Conference, Gaithersburg, MA, 1994, pp. 433–438.

[12]. S. Dar, M.J. Franklin et al. Semantic data caching and replacement.

Proc 22nd VLDB Conference, Bombay, India, 1996, pp. 330–341.

[13]. Boris Chidlovskii et al. Semantic cache mechanism for

heterogeneous Web querying. The International Journal of Computer

and Telecommunications Networking, Volume 31, pp. 1347 - 1360,

1999

[14]. S.J.Russsel and P. Norvig Artificial intelligence: a modern approach.

Prentice-Hall, 1995

[15]. RSL, http://www.adobe.com/devnet/flex/articles/rsl.html

