
Towards a Data Access Framework for Service-Oriented Rich Clients

Qi Zhao1 XuanzheLiu1* XingrunChen1 Jiyu Huang1 Teng Teng2 Yong Zhang2
1Key Laboratory of High Confidence Software Technologies, Ministry of Education, China

1School of Electronics Engineering and Computer Science, Peking University, Beijing, China
2
Kingdee Middleware Company Ltd., Shenzhen, China

zhaoqi06@sei.

pku.edu.cn

liuxzh@sei.pku.e

du.cn

chenxr07@sei.pk

u.edu.cn

huangjy07@sei.p

ku.edu.cn

tengteng@apusic.c

om

zhangyong@apusi

c.com

Abstract—Along with the proliferation of Web-delivered

services and the wide adoption of popular Web technologies, it

has been an emerging development style that composes services

into Rich Internet Applications in the client-side runtimes, i.e.

web browser. These service-oriented rich clients (SoRC) have

to access and process client-side data for rich user experiences.

Though server-side data access has become simple and

effective facilitated by frameworks, e.g. Hibernate, client-side

data access is yet challenging due to the heterogeneity and non-

determinism derived from the local storage solutions (such as

Flash LSO, HTML 5, etc.) and web browsers. In this paper, we

present a web browser-based data access framework for

service-oriented rich clients. The main efforts of this paper

include: 1) an adapter for shielding heterogeneous data sources

and a set of unified APIs for hiding incompatible access APIs

provided by different local storage solutions; 2) a performance

analysis of heterogeneous local storage solutions and an

algorithm for selecting the most suitable local storage for

current RIAs and browser; 3) a series of experiment

evaluations for the feasibility and effectiveness of the

framework.

Keywords-data access; RIA;serivce-oriented rich client

I. INTRODUCTION

In the last years, browser-server architecture has evolved

a lot. At server-side, Service-Oriented Architecture (SOA)

has been widely adopted, and data and functionalities can be

accessed in terms of Web services (SOAP and RESTful

Web services, RSS/Atom feeds). At client-side, web
browser is capable of providing rich user experiences

facilitated by Web technologies (AJAX, Flash, etc).

Therefore developers are now composing various services to

create a plethora of Service-Oriented Rich Internet

Applications (SoRIA) [1]. SoRIAs can well deal with

several drawbacks of traditional web applications, such as

poor user experience, unnecessary round-trip server access,

and so on [6].
A major distinguished feature of SoRIAs is the capability

to store and process data directly at SoRIAs' client-side, i.e.
Service-Oriented Rich Client (SoRC) [1]. The client-side
storage and computing capacities make SoRIAs capable of
providing richer and more interactive user interfaces. It also
significantly reduces network traffic using more intelligent
asynchronous requests that send only small blocks of data [9].

Therefore, with the increasing of SoRIAs, the requirements
of local storage increased rapidly. [7][8] indicate that
SoRIAs had better to or even have to retrieve or persist data
at client-side (i.e. local) in several cases. For example, if an
entity represents content owned by the individual user or
primarily originated and manipulated at client-side, client-
side persistence might be achieve better performance since it
gets rid of those unnecessary remote round-trips.
Furthermore, if SoRIAs work under the offline mode, all
data have to be retrieved locally, in which case remote data
access will be failed and then cause bad user experience. To
meet the demand, a number of local storage solutions appear,
e.g. Flash Local Shared Objects (LSO)

1
, HTML 5

2
, Google

Gears
3
. These solutions provide client-side data sources to

make the SoRC capable of storing data at local. Until now,
all popular web browsers, as "SoRC platforms", have local
storage capacity more or less. For example, the old versions
of browsers, such as IE 6, have such capacity via plug-ins;
while the latest versions of the browsers, e.g. Safari 4,
support local storage natively.

However, the local storage capacity still does not widely
used in current SoRIAs. The fundamental reason is data
access issues, which are mainly due to heterogeneity and
non-determinism derived from the local storage solutions
and the browsers: The heterogeneity is casused for the
different solutions are incompatible and each solution is only
supported by part of browsers (see TABLE I.), The
nondeterminism means that a SoRIA cannot know which
web browsers their users used and further which local
storage solutions are supported until actual users arrive. As a
result, to use local storage capacity, a SoRIA should be able
to access several heterogeneous data sources in different web
browsers. Unfortunately, it is not easy to produce optimal
data access solutions for multiple web browsers. In fact,
current SoRIAs are always based on one specific local data
source. For example, Gmail used Google Gears as its local
storage solution to implement its offline feature at first. Until
recently, however, it changed to HTML5 database solution.
The two solutions are supported by very different web
browsers (Google Gears: IE 6+, Firefox 1.5+, Chrome;

* Corresponding Author.
1 Flash Local Shared Objects,
http://www.adobe.com/products/flashplayer/articles/lso/
2 HTML 5, http://www.w3.org/TR/html5/
3 Google Gears, http://gears.google.com/

http://www.adobe.com/products/flashplayer/articles/lso/
http://www.w3.org/TR/html5/
http://gears.google.com/

HTML5 database: IE 8+, Chrome 3+, Safari 3.1+). Therefore,
the offline feature always cannot serve all users.
Nevertheless, even so, Gmail does not maintain the Gears
and HTML5 solutions both. This proves the difficulty of
realizing a data access solution supporting multiple local
storages.

At server-side, web application vendors also suffer from
data access issues when their application servers (e.g.
Weblogic or JBoss) accessing heterogeneous databases (e.g.
Oracle and MySQL). In this situation, the vendors turn to
server-side data access frameworks (e.g. Hibernate

4
) rather

than resolve the issues manually. Data access framework
takes charge of connecting applications and data sources [4]
and makes data access become simple and efficient [2][3].
Accordingly, to address the local data access issues for
SoRIAs mentioned above, we believe that a data access
framework for SoRC is required.

In this paper, we therefore propose a data access
framework, which connects the client-side data model with
data sources, resolves the data access issues for SoRC, and
assists vendors to build SoRIAs with local storage capacity.
Currently, there are several methods of rich clients, such as
JavaScript rich clients in web browser, ActionScript rich
clients in Flash player and so on. Our framework only targets
at the JavaScript rich clients in browser currently, since it is
the most widely used. However, the approach within this
paper can apply to other types of rich clients.

The main capabilities of our framework include: 1)
providing a unified means to store data objects and shielding
the heterogeneous client-side data sources and incompatible
local storage solution APIs; 2) selecting the proper local
storage solution based on the characteristics of current
browser and SoRIA in use. The evaluation results
demonstrate the effects of this framework. Base on it, the
SoRCs can work with diverse client-side data sources
properly and effectively.

The rest of the paper is organized as follows. Section 2
discusses related work. In Section 3, we specify the data
access issues in the SoRCs. Section 4 presents our
framework and especially explains the solutions to resolve
the issues mentioned above. Section 5 gives the evaluation.
Finally, we give some discussions in Section 6 and conclude
this paper in Section 7.

II. RELATED WORK

Some RIA Web engineering research works [7][8] pay
attention to client-side data modeling. These works provide a
set of guidelines to assist developers to determine store
location (server-side or client-side) of specific content. They
also offer modeling approaches to describe client-side data
model. The models can be transformed into final RIA
automatically. The works indicate the requirements and
feasibility of local storages in the rich clients. However, the
works do not specify how their rich clients to access local
storages. And there is no sign that they concern the
heterogeneous issues of local storage solutions and browsers.

4 Hibernate, http:// www.hibernate.org

Since the SoRC begin to adapot MVC pattern, a number
of rich client MVC frameworks have arisen, such as
JavascriptMVC

5
 and SproutCore

6
. The frameworks provide

MVC "templates" to developers. With the templates,
developers can build MVC rich clients more easily. Since
data models in rich clients generated by the frameworks also
need connect with data sources, the model part of the
frameworks pays attention to data access more or less.
However, until now, these works focus on accessing server-
side data sources rather than client-side data sources.

Many research works focus on server-side data access
[11]. There are also plenty of mature server-side data access
frameworks, such as Hibernate. These works inspire us to
provide a data access framework for rich clients. We also
borrow lots of ideas from the works. However, the rich client
data access has its own issues, such as nondeterminism
derived from web browsers, which are not suffered from by
server-side data access framework. These special issues are
the uppermost concern in our work.

III. CLIENT-SIDE DATA ACCESS ISSUES FOR SERVICE-

ORIENTED RICH CLIENTS

A. The Issues due to Heterogeneous Storage Solutions

As previously mentioned, with the requirements of local
storage rapidly increasing, diverse local storage solutions
have been arisen, such as Flash LSO, Google Gears and
HTML5, which is the next version of HTML. However, the
diverse local storages are heterogeneous.

Currently, the local storage solutions mainly include two
sorts. The first type of solutions embeds lightweight
relational databases (e.g. Sqlite) into browsers. They provide
SQL query APIs for the SoRCs. The second type of solutions
also provides table-based data sources. However, their data
sources offer one table for each SoRC and each table only
has two columns (a key and a value). The table supports
simple CRUD functions rather than powerful query language.
Comparing the two, the former has more powerful
capabilities, while the latter is easier to be used for simple
requirements. Accordingly, the two types are both necessary
for SoRCs. Customarily, the first type of solutions is referred
to as "SQL Local Storage", and the second is called "non-
SQL Local Storage". The two types are not completely
compatible obviously and the heterogeneous issue should be
addressed.

5 JavaScriptMVC, http://javascriptmvc.com/
6 SproutCore, http://www.sproutcore.com/

http://www.hibernate.org/
http://javascriptmvc.com/
http://www.sproutcore.com/

Figure 1 Incompatible APIs for Different SQL Local Storage Solutions

Figure 2 Heterogeneous Local Storages

Compounding this problem, each type of solutions has
several different realizations. The SQL local storage is
supported by Google Gears and HTML5 database. IE
userData, Flash LSO, "HTML5 local storage" solutions
provide non-SQL client-side data sources. Each
implementation has its own characteristics and APIs. For
example, in Google Gears, the SQL queries execute in
synchronous model. While HTML 5 database has an
individual background thread dealing with every SQL query
asynchronously. As a result, the data result set handler
should be registered as a callback functions in HTML5
database solution. The APIs of the two solutions are quite
different thus, as shown in Figure 1. When rich clients access
the diverse local data sources, these incompatible APIs are
also an important issue that has to be resolved.

Furthermore, current data models in SoRCs are always
object-oriented. Therefore, there are classic "impedance
mismatch" issues [10] between data objects and the different
client-side data sources, as shown in Figure 2.

B. The Issues due to Diverse Web Browsers

In practice, the issues for accessing client-side data
sources are even more complex, since the possible web
browsers, as the platforms for SoRCs, are wide varieties and
each supports different local storage solutions. TABLE I.
illustrates some major web browsers and the local storage
solutions they support.

TABLE I. LOCAL STORAGES SUPPORT IN MAJOR WEB BROWSERS

 IE Firefox Chrome Safari IE

(Mobile)

Safari

(iPhone)

IE

userData

5.5+ N/A N/A N/A N/A N/A

Flash

LSO

Plug-

in

Plug-in Plug-in Plug-

in

N/A N/A

HTML 5

Local

8.0+ 3.5+ 3.0+ 3.1+ N/A 3.1+

(OS 2+)

HTML 5

Database

N/A N/A 3.0+ 3.1+ N/A 3.1+

 (OS 2+)

Google 6.0+, 1.5+, Default N/A N/A N/A

Gears Plug-

in

Plug-in

A local storage solution cannot be used in the browsers

that do not support them. Therefore, if a SoRC uses specific
local storage solution (e.g. Google Gears), it may not be able
to serve some browsers (e.g. Safari). Unfortunately, in
Internet environment, the SoRCs have no idea about what
browser may visit before the SoRIAs are deployed and actual
users arrive. As a result, selecting an available local storage
for current browser in use is a great issue.

Furthermore, one browser may support several available
local data sources, which have different performances.
Therefore, the goal of local storages selection may be not
only to find available local storages but also try to determine
which one is the most suitable in current situation.

IV. DATA ACCESS FRAMEWORK FOR RICH CLIENTS

There are heterogeneous local storage solutions. On the
other hand, different web browsers support different
solutions. Therefore, the data access framework for SoRCs
has two main functions: 1) to adapt heterogeneous client-side
data sources and provide a set of unified APIs to store data
objects; 2) to select a rational local storage solution for
current SoRIA and web browser in use.

In this section, we illustrate the detail of our data access
framework for rich clients and explain how it addresses the
issues in above section. As mentioned previously, our
framework target at the JavaScript rich clients in browser.
Therefore, the framework is implemented by JavaScript and
hosted in web browsers. Developers need import the
frameworks' JavaScript files into their project. Then the
framework will be initialized when SoRIAs loaded into web
browsers.

A. Adapting Heterogeneous Data Sources

The impedance mismatch is a question which most every
data access framework faces. Our data access framework
also suffers from the model mismatch between object-
oriented data model and local data sources.

Currently, there are mainly two patterns, ActiveRecord
7

and DAO (Data Access Object)
8
 for data access framework

to address the mismatch issues between object-oriented
applications and data sources. ActiveRecord pattern makes
developers be able to use persistent functions in more
intuitive and convenient way [12]. However, since the
pattern requires weaving persistent methods into data objects
dynamically, its realization depends on reflection mechanism
and it is hard to be implemented by compiled languages. Our
data access framework is realized by JavaScript, which is a
dynamic, weak-typing and interpreted language. Accordingly,
the framework adopts ActiveRecord pattern.

To make the framework know which properties in an
ActiveRecord should be persisted, developers need define
the metadata on data model, as shown in Figure 3. The
metadata includes the name and type of properties. And then,

7 ActiveRecord Pattern, http://en.wikipedia.org/wiki/Active_record_patter
8 DAO Pattern, http://en.wikipedia.org/wiki/Data_access_object

http://en.wikipedia.org/wiki/Active_record_patter
http://en.wikipedia.org/wiki/Data_access_object

when a SoRC loaded, the framework will read all metadata
definitions and weave a series of persistent methods into data
classes and objects at runtime, such as User.find, user.save,
user.update and so on.

Figure 3 Metadata of Data Model

The ActiveRecords can be mapped to the structures of
heterogeneous data sources. As shown in Figure 4, a data
object is persisted as a row of a specific table in SQL
database or a JSON

9
 string indexed by type and id in the

non-SQL key-value table. If a persistent method (e.g. save) is
invoked, the invocation will be translated into specific
operations on current used data source (e.g. SQL "insert" on
SQL database or setItem method on key-value table) and
sent to related adapter.

Figure 4 Mapping Objects to Different Data Sources

SQL DB adapter and key-value table adapters address the
issue about the incompatible APIs of SQL and non-SQL
local storage solutions. The adapters encapsulate the widely
different APIs of diverse storage solutions, and expose a set
of unified APIs which provide the general functionalities,
such as CRUD and simple aggregate operations. However, if
rich clients need some specific capacities, e.g. complex SQL
queries, they may still have to use solution-specific APIs.

B. Selecting Suitable Data Sources

Although the framework makes the SoRCs be able to
store data objects into different data sources via a unified
way, a crucial issue still remains to be resolved as mentioned
above – how to determine which local storages is most
suitable for a specific situation. The decision-making
depends on two aspects.

The first influencing factor is current web browser in use.
As previously mentioned, the different browsers support
different solutions. The available client-side data sources
therefore depend on the current browser in use. Since

9 JSON, http://www.json.org

nobody can prejudge what browser may be used, the data
source selection has to be made at runtime. The local data
source adapter finds the available data sources via: 1) the
"user-agent" field, e.g. "Mozilla/5.0 Gecko/20100401
Firefox/3.6.3", which marks each browser's type and version
(e.g. Firefox 3.6.3), and; 2) a series of conditional statements,
e.g. "if (window['google'] && window['google']['gears'])",
which determine whether a plug-in (e.g. Google Gears) is
installed or not.

Unfortunately, there will be no available client-side data
source in the worst case. For example, TABLE I. illustrates
mobile IE does not support any local storage solution. In
order to address this situation, the data access framework
offers a simulated data source to imitate a client-side data
source in the server-side. When a browser without usable
local storage arrives, the simulated data sources will allocate
a region for the browser. The region is identified by a unique
id saved in the browser's cookie or URL parameter. The way
of simulated data source working is similar with the server-
side HTTP session. The simulated data source ensures that
each browser has at least one available "client-side" data
source, even if the browser does not support any local
storage solution.

Through the above step, several available client-side data
sources have been picked out. However, a further problem is
which storage solution is the most suitable for current SoRIA.
At this stage, the most important factors that affect the
applicability of data sources are performances and size limits.
The performances of different local storage differ
significantly. Figure 5 illustrates CRUD performances of
different local storage solutions in different web browsers.

Besides the difference of performance, the local data
sources also have different storage size limitations, refer to
the following table.

TABLE II. SIZE LIMITATIONS OF DIFFERENT LOCAL STORAGES

Data

Source

Flash

LSO

IE

userData

HTML 5

Local

HTML5

Database

Google

Gears

Size

Limit

100K 250K Depend

on Impl.

Depend on

Impl.

No Limit

Accordingly, we consider the applicability of data

sources from their CRUD performances and size limitations.
The CRUD operations' performance of each data source

could be denoted as a vector
 durc P,P,P,P

, while the size

limitation of each data source could be expressed as maxS
.

And then we describe the characteristics of a SoRIA through

two variables: a vector
 durc W,W,W,W

presenting the
weighting of each operation in the rich clients, and a

variable maxappS  expressing the rich clients required max
size of storage. Therefore, the evaluation function of each
data source's applicability for a SoRIA can be denoted as:

)SS(if,

W,W,W,WP,P,P,P

1
E maxappmax

durcdurc





)SS(if,0E maxappmax 

http://www.json.org/

The most suitable data source has maximum E value. The
data access framework supports setting the characteristic
variables of a SoRIA in three ways:

 There is no especial characteristic description by

default. Therefore,
 durc W,W,W,W

are assigned

to <1,1,1,1> and maxappS  is assigned to infinite. This
way guarantees that every rich clients can execute
without errors;

 The RIAs vendors can assign the characteristic
variables manually. First, they can determine that
their rich clients are read-intensive or write-intensive.
In the former a high value, while in the latter a low

value, will be given to rW
. And then the vendors can

also assign maxappS  ;

 At last, the local data source adapter can select the
characteristic variables adaptively. In this way, the
framework selects the best average performance data
source at first and keeps a log of every history

operations.
 durc W,W,W,W

is assigned to the
quantity of history CRUD operations in a time

window (e.g. the recent 100 operations). maxappS  is
assigned to current size of saved data. The
framework will calculate the evaluation functions for
each data sources at intervals and migrate to new
data source with the maximum E value if necessary.

V. EVALUATION

We implement a simple online e-Store SoRIA as our
sample application. In this SoRIA, a user can browse
products' information (title, description, price …) in his/her
browsers. If the user finds a product interesting, he/she can
put it into his/her shopping cart. After added item into
shopping cart, he/she can choose to continue shopping or
proceed to check out. A new order will be created when
checkout.

The main functions of the application, such as CRUD of
product, are implemented as RESTful web services. The
SoRC provides a rich UI to use the services. The Cart
(shopping cart) and CartItem are client-side data models that
are stored in the local data sources. The CartItems associate a
Cart. We also implement a simple cache mechanism to cache
User and Product in execution to achieve better performance
and user experience. The cache mechanism saves data into
the local storages and therefore makes more persistent
operations in the client-side data sources.

A. Performances Analysis of Different Data Sources

Firstly, we measure the CRUD operations' performances
of different data sources in different web browsers. Each
operation manipulates one CartItem data object (24 bytes)
and is repeated one thousand times to make the final data
distinct. The figures below illustrate the experiments' results.
The unit of Y axis is millisecond.

The results illustrate the characteristics of heterogeneous
client-side data sources:

Figure 5 CRUD performances in IE8, Firefox 3.6, Chrome 5 and Safari 4

 IE userData data source is the IE's private local
storage solution. It is the only available data source
in IE 7 and lower;

 The performance of Flash LSO data source is very
similar in different web browsers. The possible
reason is that Flash LSO is implemented by the
unified plug-in and does not relied on browsers'
built-in mechanism;

 The performance and size limit of HTML5 data
sources differ greatly in different web browsers,
since HTML5 specifications are still in the draft
stage and browser vendors implement HTML5 data
sources according to their own understanding.
However, HTML5 data sources have the best
average performance in most modern browsers;

 Google Gears data source has fast read and slow
write operations. The average performance of
Google Gears data source is worst in all client-side

data sources. However, it is the only data source
without storage size limit. So it is suited to server
large-scale data storage requirement.

In the second test, we compare the performances of a
same local storage solution in desktop and mobile browser.
The test runs in Safari 4, which has desktop and iPhone
version. In this test, each operation also repeats one thousand
times. The result is shown in Figure 6. Since Flash LSO is
not supported by iPhone Safari, the Flash LSO related data is
not displayed in the figure.

Figure 6 Performance Comparison of HTML5 in Safari Desktop and

Mobile

In iPhone Safari, HTML5 local storage is about one
thousand times slower than its desktop version, while
HTML5 database is about two hundred times slower. Since
the two versions of Safari use the same browser core
implementation, Webkit10, the gap of performance should
be mainly due to the performance difference between PC and
mobile phone. However, if comparing the HTML5
performance in iPhone Safari with some other data sources
in desktop browser, such as Flash LSO and Google Gears,
we can find the iPhone Safari's HTML5 has excellent
performance. Since the latest mobile browsers are mostly
based on Webkit, we can draw the conclusion that the local
data sources in the latest mobile browsers are usable well.

Finally, we also compare the performance of server-side
simulated data source with local data source. Figure 7
displays the comparison results between the simulated data
source with Google Gears data source, which has the slowest
average performance in all local storage solutions.

Figure 7 Performance Comparison of Local Data Source and Simulated

Data Source

The performance of simulated data source is much
slower than the slowest local data source. Such big

10 Webkit, http://webkit.org/

performance gap is due to that each operation in the
simulated data source is a remote invocation. Moreover, in
our testing environment, the server and browser are deployed
in a same LAN, where network latency is low. The
performance of simulated data source will be worse in
production environment – the performance will decrease as
network latency increased. Therefore, the simulated data
source is only the last resort – when none of the others client-
side data sources are available.

B. Evaluation of Data Sources Selection

We evaluate the effect of our local storage selection
approach though a script which simulates users' actions and
invokes requests on behalf of a user. We make the cache
store data in the local storage rather than the memory to
obtain more local data sources visits. In this case, the rich
client firstly writes large amount of data into local storage
since the cache is empty. When the hit ratio of cache rises,
the read operations will predominate. The demonstration is
run in Google Chrome 5 and Firefox 3.6.

Chrome 5 supports four local storage solutions: Flash
LSO, HTML 5 Local, HTML 5 Database, and Google Gears,
while Firefox 3.6 supports: Flash LSO, HTML 5 Local and
Google Gears. We use the CRUD operations' performance
and size limitation measured in the last section, refer to the
following table.

TABLE III. PERFORMANCES AND SIZE LIMITS OF DIFFERENT LOCAL

STORAGES IN GOOGLE CHROME 5 AND FIREFOX 3.6

Google

Chrome

Read Insert Update Delete Size

Limit

Flash LSO 0.70ms 2.87ms 3.37ms 3.30ms 100K

HTML 5

Local

0.09ms 0.32ms 0.31ms 0.38ms 5000K

HTML 5

Database

0.001ms 0.002ms 0.002ms 0.002ms 5000K

Google Gears 0.001ms 101.96ms 93.80ms 78.00ms No

Limit

Firefox Read Insert Update Delete Size

Limit

Flash LSO 2.45ms 4.99ms 6.50ms 9.15ms 100K

HTML 5

Local

0.10ms 82.57ms 78.03ms 78.89ms 2500K

Google Gears 0.003ms 67.80ms 96.14ms 78.65ms No Limit

Then, we perform the test with the three ways of

assigning the characteristics variable of rich clients, as we

mentioned in section 4.2. In the manual way, maxappS  is
assigned to 100K due to no need for mass local storage in
this test. And both "read-intensive" and "read-write-
balancing (RW-balancing)" strategies are put to the test –

 durc W,W,W,W
is assigned to <0,1,0,0> in the former,

while <1,1,1,1> in the latter – to find how different manual
strategies affect the final result.

The following figures illustrate the evaluation results.
The two left figures present the total data access processing
time with different selection strategies in different browsers.
The right parts figure the time consumption of every 50
operations to display the change of performance.

http://webkit.org/

Figure 8 Time Consumption of Different Strategies in Chrome 5 and

Firefox 3.6.3

Figure 9 Time Consumption of Every 50 Operations in Chrome and

Firefox 3.6.3

The above results reveal the following observations:

 The rich client cost the longest time by default. The
default strategy has to no idea about the size
requirement of application. The strategy therefore
always tend to select Google Gears data source,
which is the only currently known "infinite" local
storage, to ensure that data will not overflow.
However, the write operations in the Gears data
source work extremely slowly. As the blue lines
shown in Figure 9, the time consumption of
operations is high at first due to frequent write
operations, and therefore increases the total
processing time.

 With the manual strategies, the result is a bit
complicated. Counts afterward demonstrated that the

ratio between read and write operations in the test is
three to one. However, read-intensive strategy does
not always select the most suitable data source.
 In Google Chrome, both read-intensive and

RW-balancing strategies achieve great
performances. It is because that Chrome's
HTML5 database executes in an independent
background thread and therefore all CRUD
operations run extremely fast. Accordingly, no
matter read-intensive or RW-balancing strategy,
HTML5 database is selected and then the best
performance is achieved.

 In Firefox, however, the read-intensive strategy
gets poor performance, similarly with the default
situation. But the RW-balancing strategy
achieves a better result. The reason is that
although Gears data source gains 2ms
(millisecond) with each read operation, it slow
about 70-80ms with each write (CUD) operation
compared to Flash LSO. Therefore, even though
the read operations in the test is three times more
than write operations, the read-intensive strategy,
which selects Gears data source, is much slower
than RW-balancing strategy (Flash LSO).

 The result above indicates that due to the exact speed
differences among local storage solutions are
complex, to find the most suitable data source, it is
better to fine-grained

assign
 durc W,W,W,W

based on the test results
(e.g. <0.7, 3, 0.01, 0.29) rather than coarse-grained
"strategy".

 The adaptive selection way fine-gained

sets
 durc W,W,W,W

value based on historical
data.
 In Chrome, HTML5 database is always selected,

since HTML5 database always works fastest no
matter which kind of operation is in the majority.
The total time of adaptive selection is a bit longer
than manually strategies (also use HTML5
database). It is possibly due to the operation
logger spends a litter time.

 In Firefox, Flash LSO is selected at first, since it
has the best average performance. When cache
hit ratio rises, the read operations grow in
number. In this situation, Google Gears, which
read faster, is more suitable. The right blue bar in
Figure 8 illustrates that the operations' time
consumption with the adaptive selection is
shorter than RW-balancing strategy, which only
uses Flash LSO data source. Unfortunately, The
red part of right bar in Figure 8 demonstrates the
cost of data source migration, which need delete
all data in the old source and insert them to the
new one. The cost makes the adaptive selection
manner be even slower than the default way.

The result using adaptive selection proves that data

source migration at runtime is not cost effective. However,

the test with manual strategies shows that the fine-grained

assigned
 durc W,W,W,W

is necessary to find suitable
data source. Therefore, we believe a more rational way to
select data source is that recording historical operations but
migrate data source before application closed rather than
during application execution.

Figure 10 Time Consumption of Different Strategies in Firefox 3.6.3

The right blue bar in Figure 10 illustrates that the total
processing time of re-run the test after re-selecting data
source before the RIA closed. This way selects the most
suitable data source (Flash LSO) neither depending on
unreliable coarse-grained manual strategy nor affecting the
total time consumption and user experience seriously.

VI. DISCUSSION

Object-relational mapping (ORM) is a mature topic [11].
In practice, there are many complicated ORM functions,
such as inheritance mapping, object-oriented query language
(e.g. HQL) and so on. However, the SoRCs are still in early
stage and do not have so complex data models yet, most of
the functions are not necessary characteristics thus. On the
other hand, since the data access framework should take non-
SQL local storages into consideration, it is hard or even
impossible to realize some of the powerful functions. The
advanced topics therefore are not uppermost concern within
this paper. So far, our framework only adopts the simple
ORM strategies, and developers should still set up complex
mappings manually. In our future work, we will try to
introduce more powerful ORM mechanisms into the
framework and investigate how the mechanisms affect rich
client data access.

Currently, our local data sources selection approach only
consider the performance of CRUD operations. However, the
powerful but complicated aggregate operations also have
great influence on the performance of local storages and
further greatly affect the data sources selections. For
example, SQL solutions, such as Google Gears, support
single and much condition inquiry based on SQL. In non-
SQL local storages, such inquiries have to be implemented
by traversing the whole table, and therefore must be much
slower. Accordingly, considering the performance of
aggregate operations, the SQL local storage solutions can be
applicable for more RIAs in some browsers (e.g. Firefox). It
is able to deduce that the selection approach in this paper still
can be used to deal with this condition with extended

performance vector and weighting vector. Nevertheless,
related evaluation is still required.

VII. CONCLUSION

Service-Oriented Rich Internet Applications combine the
benefits of the Web distribution model with the highly
interactive desktop applications. SoRIAs move amount of
data and application logics from server-side to SoRCs.
Thererfore, the SoRCs suffer from client-side data access
issues. In this paper, we propose a data access framework for
SoRCs. This paper makes the following contributions: 1) An
adapter for shielding heterogeneous data sources (SQL or
Non-SQL) and a set of unified APIs for hiding incompatible
access APIs provided by different solutions; 2) An algorithm
for selecting the most suitable local storage for current
SoRIA and browser in use; 3) A performance analysis of
heterogeneous local storage solutions and some experiments
for evaluating the feasibility and effectiveness of the
framework.

As we discussed, there are still some open issues for our
data access framework. We will try to address these issues in
the future work.

VIII. ACKNOWLEDGEMENT

This work is supported by the National Basic Research
Program of China (973) under Grant No. 2011CB302604;
the National Natural Science Foundation of China under
Grant No. 60821003, 60873060, 60933003; the High-Tech
Research and Development Program of China under Grant
No. 2009AA01Z116; and the National S&T Major Project
under Grant No. 2009ZX01043-002-002.

REFERENCES

[1] Qi Zhao et al., A Browser-based Middleware for Service-Oriented

Rich Client. International Conference on Service Science (ICSS),
2010.

[2] L. M. Haas et al., Transforming Heterogeneous Data with Database
Middleware: Beyond Integration. IBM, 2001.

[3] Malcolm Atkinson, and Ronald Morrison, Orthogonally Persistent
Object Systems. VLDB Journal, 1995.

[4] Teng teng, Research on Pragmatics-based Persistence. Doctoral
dissertation, Peking University, 2007.

[5] M. Driver et al., Rich Internet Applications Are the Next Evolution of
the Web. Technical report, Gartner, May 2005.

[6] J. Duhl, White paper: Rich Internet Applications. Technical report,
IDC, November 2003.

[7] J. C. Preciadol et al., Designing Rich Internet Applications with Web
Engineering Methodologies. WSE, 2007.

[8] Alessandro Bozzon, and Sara Comai, Conceptual Modeling and Code
Generation for Rich Internet Applications. ICWE, 2006.

[9] Santiago Meliá et al., A Model-Driven Development for GWT-Based
Rich Internet Applications with OOH4RIA. ICWE, 2008.

[10] Zani, G.P., “Expert Database Systems: State of The Art”, Tutorial

Documents of the First World Congress in Expert Systems, USA,
1992.

[11] Scott W. Ambler, Mapping Objects to Relational Databases: O/R

Mapping In Detail.
http://www.agiledata.org/essays/mappingObjects.html, 2006.

[12] Sam Ruby et al., Agile Web Development with Rails (3rd Edition).
Pragmatic Bookshelf, 2009.

http://www.agiledata.org/essays/mappingObjects.html

