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Abstract Facilitated by the SOA and new Web technol-
ogies, Service-Oriented Rich Clients (SORCs) compose
various Web-delivered services in Web browser to create new
applications. The SORCs support client-side data storage
and manipulation and provide more features than traditional
thin clients. However, the SORCs might suffer from data
access issues, mainly due to both client-side incompatible
data sources and server-side improper or even undesirable
cache strategies. Addressing the data access issues, this paper
proposes a data access framework for SORCs. The main con-
tributions of this paper are as follows. First, the framework
makes the SORCs accommodate heterogeneous local storage
solutions and diverse Web browsers properly. The framework
abstracts the underlying details of different local storages
and selects the most proper data sources for current SORC in
use. Secondly, the framework provides a cache mechanism,
which supports client-side customized cache strategies. An
adaptive technique for the strategies is also proposed to adjust
cache strategies based on users’ historical actions to achieve
better performance.
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1 Introduction

In the recent a few years, the Web applications have evolved a
lot. At the server-side, Service-Oriented Architecture (SOA)
has been widely adopted. The servers publish data and
functionalities through some Web-delivered services (such
as SOAP and RESTful Web-delivered services, RSS/Atom
feeds and so on). At the client-side, the Web browsers
are now capable of providing rich user experiences facil-
itated by the popular Web technologies (such as HTML
5, JavaScript). Therefore, newly emerging Service-Oriented
Rich Clients (SORCs) can compose various Web-delivered
services to create Rich Internet Applications (or RIA for
short) [1–3]. For example, the new version of Twitter1is a typ-
ical RIA that is built upon its own APIs (a group of RESTful
services). The client-side of new Twitter is a SORC, which
no longer displays only HTML pages, but retrieves data from
the server-side APIs and deals with the data and generates
user interface (UI). SORCs can cope with several limitations
of the thin clients supported in traditional Web applications,
such as poor user experience, unnecessary round-trip server
access [4].

With the evolution of the application architecture, the
data storage and manipulation at the client-side evolve as
well. In the traditional Web applications, the servers and
the client exchange Web pages by means of forms where
data and presentation elements are mixed. The browsers just
directly display the pages. However, with the wide adoption
of Service-Oriented Computing, the SORCs can leverage the
Web-delivered services. Data exchanged between the servers

1 Twitter: http://www.twitter.com.
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Fig. 1 Comparison of the thin clients and the SORCs

and the SORCs are no longer pages and forms, but structured
datasets in form of XML or JSON.2 The SORCs parse and
cache the results of service invocations, execute business
logics and then generate user interface (UI). Compared with
the thin clients, the SORCs are able to store and manipulate
structured datasets at the client-side. Such capability makes
the SORCs provide more interactive UI, which may be very
close to the experience of desktop clients. Moreover, since
the datasets are in more logical structures, the SORCs can
retrieve them in asynchronous and intelligent fashion, hence
significantly reduce the network traffic overhead [5] (Fig. 1).

The client-side data storage and manipulation bring some
challenging issues to the SORCs. The SORCs suffer from
data access issues when they retrieve, persist and cache data.
For example, when storing data at local storage, the SOR-
Cs might face the incompatible client-side storage solutions
(e.g. Flash LSO3, HTML 54or Google Gears5) and hetero-
geneous Web browsers (e.g. IE or Firefox). Another exam-
ple is that, the cache mechanism of the SORCs could apply
object-level strategies to parse the relationships among the
datasets and eliminate cache redundancy. Unfortunately, cur-
rent HTTP cache in browsers is designed for caching the Web
pages. It just caches a page as an indivisible body and cannot
handle the relationships among datasets. Such data access
issues increase the difficulties in SORCs development.

The traditional Web applications also suffer from the data
access issues when their application servers (e.g. Weblogic
or JBoss) access the diverse databases (e.g. Oracle and
MySQL). In this situation, the server-side data access frame-
works (e.g. Hibernate6) take charge of coordinating applica-
tions and data sources [6] and make data access simpler and
more efficient [7,8]. Consequently, to address the data access

2 JSON: http://www.json.org.
3 Flash Local Shared Objects, http://www.adobe.com/products/flash
player/articles/lso/.
4 HTML 5, http://www.w3.org/TR/html5/.
5 Google Gears, http://gears.google.com/.
6 Hibernate, http://www.hibernate.org.

issues for SORCs, we believe that a data access framework
for SORCs is required.

In this paper, we propose a data access framework for
SORCs to resolve the client-side data access issues. The main
contributions of this paper are the following:

• The framework makes the SORCs capable of accommo-
dating heterogeneous local storage solutions and diverse
Web browsers properly. The framework abstracts the
underlying details of different local storages, coordinates
the incompatible issues and provides a unified local data
source. A local data sources selection approach can assist
the SORCs to select the most proper data sources based
on current SORC and Web browser being used;

• The framework provides a cache mechanism. The cache
mechanism allows the SORCs developers to customize
client-side cache strategies and resolves the data access
issues caused by improper cache strategies. Our mech-
anism provides some useful features, including the fine
granularity of cache strategies, client-side expired time
and so on. An adaptive technique for the strategies is
also proposed. The adaptive approach adjusts cache strat-
egies based on users’ historical actions to achieve better
performance.

The rest of the paper is organized as follows. In Sect. 2, we
introduce the data access issues for the SORCs. Sections 3
and 4 present our solutions for the data access issues.
Section 5 describes an illustrative case and provides the
experimental evaluation. Finally, we make some discussions
in Sect. 6 and conclude this paper in Sect. 7.

2 Data access issues for service-oriented rich clients

In the SORCs, contents can reside in the client-side data
sources as persistent client-side objects, rather than in the
traditional server-side databases, due to the emerging local
storage technologies [9]. Accordingly, the SORCs access the
data sources that can be at the server-side or at the client-side.
These two data sources might be used separately for different
storage requirements, or used together when necessary [10].
However, we argue that, when accessing different types of
data sources, the SORCs might suffer from some challenging
issues as follows.

2.1 Challenging issues for accessing client-side data
in SORCs

Rather than the traditional thin clients, a major feature of
SORCs is the capability to store and process data directly
at client-side. The client-side storage and computing capac-
ities make SORCs capable of providing richer and more
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Fig. 2 Heterogeneous local
storages

interactive UI. It also significantly reduces network traffic
by leveraging intelligent and asynchronous requests that only
deliver small blocks of data. Therefore, with the increasing
number of SORCs, the requirements of local storage rise rap-
idly. It indicates that SORCs should retrieve and persist data
at client-side (i.e. local), or even have to use local storage
[9,10]. For example, if an entity represents content owned
by an individual user, it had better do local persistence to
reduce network round-trips. Furthermore when working in
offline mode, the SORCs might retrieve data from local data
sources temporarily. For these reasons, a number of local
storage solutions emerge, e.g. Flash LSO and HTML 5. The
solutions provide client-side data sources and allow the SOR-
Cs to store data locally. All currently popular Web browsers
natively support the local storage more or less. Some old
browsers (e.g. IE 6) might provide the similar capacity via
plug-ins.

Although the requirements and technologies seem to be
ready for SORCs, the local storage option has not been widely
used. The fundamental reason is that the SORCs suffer from
the heterogeneous local storage solutions and browsers.

The local storage solutions can be categorized into two
types. The first solution refers to “SQL local storage”.
It embeds lightweight relational databases (e.g. SQLite7) into
browsers and provides SQL query APIs. The second solution
is called “non-SQL” local storage. It offers table-based key-
value data sources—each SORC has one table and each table
only has a key column and a value column. The table sup-
ports simple CRUD (Create, Read, Update and Delete) oper-

7 SQLLite: http://www.sqlite.org/.

ations rather than powerful query languages. We argue that
the former one is more powerful, while the latter is easier to be
used. In practice, the two solutions usually support different
requirements. However, they are not completely compatible.

Furthermore, current SORCs are mainly based Object-
Oriented (OO) technologies. Therefore, the classic “imped-
ance mismatch” issues [11] still exist, between data objects
and local data sources. The Object-Relational Mapping
(ORM), between objects and SQL databases, has obtained
a large body of research in Database Management Systems
(DBMS) [12,13]. On the other hand, the mapping between
objects and non-SQL tables should also be considered.
Figure 2 indicates how to store OO data models with SQL
and non-SQL local storages. Classic ORM maps an OO class
to one SQL database table, and each property of the class to
one column in the table. The relations among OO classes
are realized by foreign keys among tables. When mapping
objects to a non-SQL key-value table, each object is realized
as a line of the table. The type and ID of an object refer to
the key, and the object is serialized as a string and saved in
the value column.

Each solution has several implementations. For example,
the SQL local storage is supported by “Google Gears” and
“HTML5 database” and “IE userData,” and “Flash LSO”
and “HTML5 local storage” solutions support non-SQL data
sources. Each implementation has its own features and APIs.
For example, in Google Gears, SQL queries execute in a syn-
chronous model. HTML 5 database deals with every SQL
query asynchronously, and the result handler should be reg-
istered as a callback function. The APIs of the two solu-
tions are quite different as shown in Fig. 3. Therefore, the
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Fig. 3 Incompatible APIs for different SQL local storage solutions

Table 1 Local storages support in major Web browsers

IE Firefox Chrome Safari IE (mobile) Safari (iPhone)

IE userData 5.5+ N/A N/A N/A N/A N/A

Flash LSO Plug-in Plug-in Plug-in Plug-in N/A N/A

HTML 5 Local 8.0+ 3.5+ 3.0+ 3.1+ N/A 3.1+ (OS 2+)

HTML 5 Database N/A N/A 3.0+ 3.1+ N/A 3.1+ (OS 2+)

Google Gears 6.0+, plug-in 1.5+, plug-in Default N/A N/A N/A

SORCs suffer from the incompatible APIs when accessing
the diverse local data sources.

In practice, the issues for accessing client-side data
sources are even more complex, since the Web browsers plays
as the runtime for the SORCs. Each browser supports differ-
ent local storage solutions, as summarized in Table 1.8,9,10,11

Therefore, if a SORC only works with a specific local
storage solution (e.g. Google Gears), it may not be able
to execute in some browsers (e.g. Safari). Unfortunately,
in the Internet, the SORCs cannot know the user browser
before users actually use them. As a result, selecting an
available local storage for current browser is a challenging
issue for SORCs. Furthermore, the goal of local storages
selection may be not only to find an available local storage
but also try to determine which one is the most suitable,
since one browser may support several local data sources
with different characteristics, such as performance and size
limit.

8 IE userData supported platforms: http://msdn.microsoft.com/en-us/
library/ms531424%28v=vs.85%29.aspx.
9 Flash supported platforms: http://www.adobe.com/products/
flashplayer/systemreqs/.
10 HTML 5 supported platforms: http://en.wikipedia.org/wiki/
Comparison_of_layout_engines_%28HTML_5%29#cite_note-177.
11 Google Gears supported platforms: http://en.wikipedia.org/wiki/
Google_Gears.

2.2 Challenging issues for accessing server-side data
in SORCs

Traditionally, the server-side data sources, such as DBMS,
are also heterogeneous [6]. However, SOA standardizes how
to exchange data between the servers and the clients via
standard Web-delivered service protocols (SOAP or REST-
ful) [14]. The standards can shield the heterogeneity of
the server-side data sources. In this way, our SORCs data
access framework does not have to care about the server-side
heterogeneity issues.

In such conditions, the server-side data access issues
mainly focus on connections between the SORCs and
the server-side data sources, especially cache mechanism.
Current SORCs already employ HTTP cache in order to
improve network performance. HTTP cache strategies12 are
customized at the server-side and brought into effect by
browsers. However, the HTTP cache is designed for the thin
clients [15] in traditional Web applications and might be
improper or even undesirable in the SORCs’ context. The
unsuited cache mechanism leads to unnecessary communi-
cations and user experience issues.

The SORCs obtain structured datasets from the serv-
ers rather than indivisible Web pages. The HTTP cache
regards the datasets as the indivisible body, which cannot
be cut separately. Nevertheless, the data objects in different

12 HTTP/1.1, http://www.w3.org/Protocols/rfc2616/rfc2616.html.
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Fig. 4 HTTP cache issues

datasets may be duplicated in many cases. For example, a
users list contains several users’ detail, which can be cached
for future use. However, the HTTP cache cannot cache these
details separately (Fig. 4).

Furthermore, another potential problem of cache strat-
egies at the service-side is that they might not satisfy the
customized cache requirements of the SORCs. For instance,
the SORCs access server-side data sources via both stable
network connections (e.g. using cable) and instable network
connections (e.g. WiFi or 3G). When in the instable network
connections, the SORCs may lose requests and responses. In
the offline status, the SORCs have to cache data until network
connections recover. However, the HTTP cache cannot be
aware of the network context and discard the “expired” data.
Moreover, due to the increasing number of SORCs, a new
type of Web applications, called Mashups [16], have become
popular. Mashups combine several existing server-side data
sources into a single Web application. Such SORCs often use
server-side data in unexpected ways. The server-side cache
strategies are therefore not suitable generally.

3 Adaptive access of client-side data

There are heterogeneous local storage solutions, and different
Web browsers support different solutions. Therefore, when
the SORCs access the local storage, the data access frame-
work has two main functions: (1) to adapt heterogeneous
client-side data sources and provide a set of unified data
access APIs; (2) to select a proper local storage solution for
current SORC and browser being used (Fig. 5).

3.1 Adaptation of heterogeneous data sources

Almost all data access frameworks face the impedance
mismatch problem. Our data access framework should cope
with the mismatch between objects and local data sources.

Currently, there are two patterns, ActiveRecord13 and DAO
(Data Access Object),14 to address the mismatch issues
between Object-Oriented applications and data sources. In
the DAO pattern, a data access object, e.g. session, takes
charge of dealing with all data source–related operation, e.g.
session.save (user1) in Hibernate. In the ActiveRecord pat-
tern, the data objects (called ActiveRecords) perform persis-
tent operations by themselves, e.g. user1.save() in RoR.15

The ActiveRecord pattern provides a more intuitive and con-
venient persistent way [17]. However, the pattern realization
depends on reflection mechanism and is hard to be imple-
mented in most compiled languages, since it requires weav-
ing persistent methods into data objects dynamically. Our
data access framework is realized at the client-side, where
the programming languages (e.g. JavaScript) are always
dynamic, weak-typing and interpreted. Accordingly, our
framework adopts ActiveRecord pattern.

The framework allows developers to define a metadata on
each data model, as shown in Fig. 6. The metadata includes
the name and type of each property that should be persisted.
Then, when a SORC is initialized, the framework will read
all metadata and weave a series of persistent methods into
data objects, e.g. User.find, user.save, user.update and so on.

The ActiveRecords can be mapped to the heterogeneous
data sources. As shown in Fig. 7, a data object is persisted
as a row of a specific table in SQL database, or JSON string
indexed by type and ID in the non-SQL key-value table. If a
persistent method (e.g. save) is invoked, the framework will
translate the request into the specific operation on current
used data source (e.g. SQL “insert” in SQL database or
setItem method in key-value table).

The SQL database adapter and key-value table adapter
address the issue about the incompatible APIs of the same
kinds of the solutions. The adapters encapsulate the widely
different APIs of diverse storage solutions and expose a
set of unified APIs. The unified APIs provide the gen-
eral functionalities, such as CRUD and simple aggregate
operations. However, if the SORCs need some specific capac-
ities, e.g. complex SQL queries, they may still have to use
solution-specific APIs.

3.2 Selection of proper data sources

Although our framework allows the SORCs to store data
objects into different data sources via a unified way, a key
issue still remains —how to determine which local storages
are most proper in current context. We argue that the deci-
sion-making depends on two aspects.

13 ActiveRecord Pattern, http://en.wikipedia.org/wiki/Active_record_
patter.
14 DAO Pattern, http://en.wikipedia.org/wiki/Data_access_object.
15 Ruby on Rails, http://rubyonrails.org/.
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Fig. 5 Adaptation of client-side data sources

Fig. 6 Metadata of data model

Fig. 7 Mapping objects to different data sources
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The first factor is current browser that is used by the
user. As mentioned previously, the different browsers sup-
port different solutions. The available local storages therefore
depend on the current browser. The data source selection is
made at runtime, since there is no way to prejudge what
browser is used. The framework finds the available data
sources via:

(1) The “user-agent” field, e.g. “Mozilla/5.0 Gecko/201004
01 Firefox/3.6.3”, which indicates the browsers’ types
and versions (e.g. Firefox 3.6.3);

(2) A series of conditional statements, e.g. “if (window
[’google’] && window[’google’][’gears’])”, which
determine whether a plug-in (e.g. Google Gears) is
installed or not.

Unfortunately, a browser might have no client-side data
source in the worst case. For example, Table 1 illustrates that
mobile IE does not support any local storages. To address
the problem, the framework offers a simulated data source to
imitate a client-side data source at the server-side, as shown
in Fig. 5. If a browser has no usable local storage, the simu-
lated data sources will allocate a region for the browser. The
region is identified by a unique ID in the browser’s cookie
or URL parameter. The way that the simulated data source
works is similar to the server-side HTTP session. The simu-
lated data source ensures that each browser has at least one
available client-side data source.

Through the above steps, our framework can extract sev-
eral available client-side data sources. However, a further
problem is which solution is the most proper for current
SORC. At this stage, the most important factors that affect
the applicability are performances and size limits. The perfor-
mances of different local storage differ significantly. Figure 8
illustrates the insertion performances of different local stor-
age solutions in different browsers.

Fig. 8 Insertion performances of different local storages in different
browser

Besides the difference of performance, the local data
sources also have different storage size limitations, as shown
in the Table 2.

Consequently, the framework considers the applicability
of the data sources from their CRUD performances and size
limitations. The CRUD operations’ performance of each data
source can be denoted as a vector < Pc, Pr, Pu, Pd >, while
the size limitation of each data source can be expressed as
Smax. Developers can describe the characteristics of their
SORCs through two variables: the vector < Wc, Wr, Wu,

Wd > presenting the weighting of each operation in the
SORC, and the variable Sapp−max expressing the max size
of storage. Therefore, the evaluation function of each data
source’s applicability for a SORC can be denoted as:

E = 1

< Pc, Pr, Pu, Pd > × < Wc, Wr, Wu, Wd >
,

i f (Smax ≥ Sapp−max)

E = 0, i f (Smax < Sapp−max)

The most proper data source has maximum E value. The
framework allows configuring the characteristic variables of
a SORC in three ways:

• < Wc, Wr, Wu, Wd > is assigned to < 1, 1, 1, 1 >

and Sapp−max is assigned to infinite by default. This way
guarantees that every SORCs can execute without errors;

• Developers can assign the characteristic variables
manually. They determine the SORCs are read-intensive
or write-intensive. The framework will assign a high
value to the former, while a low value to the latter. Then,
developers can assign Sapp−max;

• At last, the framework can assign the characteristic vari-
ables adaptively. In this way, the framework selects the
best average performance data source at first and keeps a
log of every history operations. < Wc, Wr, Wu, Wd > is
assigned to the quantity of history CRUD operations in
a time window (e.g. the recent 100 operations). Sapp−max

is assigned to current size of saved data. The frame-
work will calculate the evaluation functions for each data
sources at intervals and migrate to new data source with
the maximum E value.

4 Adaptive cache for server-side data

Our framework introduces a cache mechanism to address the
cache issues for server-side data access. The cache mecha-
nism supports client-side customization and adaptive cache

Table 2 Size limitations of different local storages

Data source Flash LSO IE userData HTML 5 Local HTML5 Database Google Gears

Size limit 100 K 250 K Depend on implementation. Depend on implementation. No limit
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Fig. 9 Caching server-side data

strategies [18]. It copes with the data objects rather than
the whole datasets, to further improve cache performance
(Fig. 9).

4.1 Data cache scenarios in SORCs

Generally, for all server-side data sources that are delivered
via service, the response comprises either one data object
or a collection of objects. The collection type of responses
could be denoted as {objecti |i = 1, 2, . . .} or LT (list type),
and the object type of the response could be expressed as
O (an object) or OT (object type). Based upon the above
assumption, when the SORCs request two datasets sequen-
tially, there are five cardinal cache cases where the cache
mechanism could provide cached data from the first call to
feed the second request:

• Identical. The second request has the exactly same URL
and parameters with the first one. It is the classical case
of cache;

• {objecti |i = 1, 2, . . .} � objectk . This case comes when
the OT response is contained by LT. Assume that the
first service returns a list of 10 bestsellers, while the
second one returns the most popular book. Then second
response is included thoroughly in the cache from the first
response;

• objecti � {objectk |k = 1, 2, . . .}. If an OT response is a
composite data structure with a list structure inside, then
the following LT call might reuse the overlapped data. For
instance, the OT is a description for a person. Within the
description, there is a list of his/her friends. Therefore,
after retrieving the person’s description, all requests for
his/her friends might benefit from cache;

• objecti � objectk . This is the case when users send OT
requests for different integrities of the response. Suppose
if the first call is for detailed information of a person
with ID and description, while the second call is only to
retrieve the person with his/her ID;

• {objecti |i = 1, 2, . . .} � {objectk |k = 1, 2, . . .}. This is
the case when users send LT requests in different scopes.
Suppose if the first call inquiries a collection of 10 best-
sellers from Amazon, and the second call is for the top 5.

4.2 Realization of cache

The response type (LT/OT) and cache cases can be setup
in the data model. Developers need to decide the response
types, cache cases and primary keys for the model. When
a request comes, the cache mechanism looks up its corre-
sponding data model according to the URL pattern specified
in the data model. After that, the mechanism needs to deter-
mine all related data models searched in the cached data
objects. To this end, the response type and cache cases of the
model are retrieved. The processing logic for different cases
is discussed as follows:

• The first four cases discussed in the previous section
would be handled automatically and uniquely: (1) to
retrieve the data model of the other party in such rela-
tionships; (2) to search all data objects of the existing
data models in the cached data;

• The last case (one list contains another) is more complex.
All developers have to supply an extra query interface
for such a LT model (only for models involved in such
a cache case). In that query interface, the programmers
should explicitly indicate how to query related models.
For instance, if a LT model is to return a list of books, it
should embody a query interface which takes the start and
end indices as parameters to return the “slice” list. There-
fore, after caching a list of “top 100 books”, a subsequent
inquiry for a list of “top 30 ∼ top 50” books could be
handled by this inquiry interface with desired results.

When searching all related data models, judgment for a
cache hit is realized through primary keys and the parser
logics specified in the model. For instance, a request URL like
“proxy://url/q?name=Jeffrey” is parsed to as an inquiry for
a model whose name is Jeffrey. Then, the primary key in the
related object is compared with this string. If not matched, or
the instance is out of time, the cache mechanism would make
the remote call and return to users after the server responds.
Otherwise, a hit is found and the matched object is returned.

Validation is performed during the runtime. We imple-
ment validation with meta-property in the data model. The
meta-property contains the following information:
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Table 3 The cache strategy of the meta model

Policy name Implementation

Time since last access A timestamp for the last access

Entry time A timestamp for instantiation

Frequency of access A number to keep on counting the frequency

Expiration A timer for validity of the model or data fields

• Data Type: The data type declares data type for each prop-
erty in the model to facilitate the inquiries. It can be either
simple data types (date & time, float, object, string etc.)
or complex data types (such as other data models).

• Cache Strategy: The cache strategy is employed to
achieve validation and replacement. Currently, we support
the following policies in the strategy in Table 3.

In Table 3, the expiration field and entry time determine
when a validation is necessary. Time since last access and
frequency of access determine the target for replacement
when cached data exceeds the size limit.

The cache mechanism sets up the above meta model for
each data model. At runtime, after the instantiation of each
data model, a time counter is triggered to record the expira-
tion. When it diminishes to zero, the framework would inval-
idate the corresponding cache. When users request the data
after invalidation, the framework would make the request to
the target service and refresh the cache.

4.3 Adaptive cache

Users might access the cached data irregularly, and a fixed
expiration would impact on the whole system’s performance.
On the one hand, if the expiration is too short, the hit ratio will
be small and the system must send more query requests to the
services, which might occupy and waste more resources. On
the other hand, if the expiration is too long, users will have
to use the out-of-time results, which might make the whole
application not reliable.

Moreover, from the experiment, we believe that there are
many factors affecting the changes in cache. These factors
include both the user behaviors and service behaviors. In
terms of the user factors, hit ratio and access frequency
would refine the expiration time. In terms of the services
factors, the update frequency of services might matter. For
example, some of the services change their results by sec-
onds, for example, the stock price fetching or friends-list
fetching services, while others just return the same result
every time when requested. Under such circumstances, the
expiration time should change correspondingly. In this paper,
we mainly ignore the service factors because our client-side
framework cannot directly make constraints of the service
on remote server.

Thus, we propose an improvement of cache strategy. In
this strategy, our framework would find the desired expira-
tion time expected by users based on the hit ratio, the access
frequency and the data updated rate. The improved cache
strategy tries to coordinate the following scenarios:

• Users access the cached data, which returns either a hit
or a miss. In this way, the hit ratio is changed.

• Users access the cache either more “quickly” or “slowly”,
which in turn alters the access frequency.

The algorithm borrows the experience of the simulated
annealing algorithm [19], to address the requirements of
selecting the most appropriate expiration time for users.
In this strategy, we adapt the expiration time dynamically
according to the hit ratio and users’ behaviors in the history
(such as access frequency).

As shown in (Formula 1), the estimated value Vi denotes
the expiration time for each cache item Ii. We denote Va as
the threshold value, then Vi is calculated as below.

Vi = e
α × hit_ratio
temperature , if(Vi > Va)

Vi = N A, if (Vi ≤ Va) (1)

The variables in formula (1) are explained as followings.

• Variable hit_ratio denotes the percentage of the hit times
from all the visiting of cache item Ii. We enlarge the influ-
ence of hit_ratio by multiplying it by a constant α, which
is assigned to 1,000 in our current implementation. The
higher the hit_ratio’s value is, the larger the expiration
time value will be. If at most of time, we are able to find
what we need in the cache, we just do not need to visit
the services any longer. It is reasonable to simply enlarge
the expiration time to make the cached data effective for a
longer period of time. In contrast, if the hit_ratio is small,
it means that the current cached data have little merit
for the system to visit again, which has more potential to
become out of time. In this case, we should assign shorter
expiration time to cut down the data’s lifespan. Since a
too short expiration time makes the cache little use, we
set up a lower bound threshold value and would turn off
cache for the expiration that drops below it.

• Variables temperature denotes the sensitivity for the
expiration time to change with hit_ratio. In addition, it
essentially reflects the current frequency of accessing the
services, in some degree representing the users’ behavior.
The user may use the same query to visit the same service
many times in a very short time, causing hit_ratio increase
remarkably. The expiration time will soon become very
high if it is too sensitive to the hit_ratio. On the contrary,
if user does not use the service quite frequently, we can-
not get enough experience to adapt the expiration time.
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As a result, the sensitivity should be adapted based on the
frequency of accessing.

During the annealing process, temperature is adjusted as
follows—Let T be the temperature and minT be its lower
bound. Let Foa denotes frequency of accessing by users,
then:

T = Max
{

min T, Foa2
}

(2)

This formula represents that temperature is decreased
when frequency of accessing grows up and increased when
it falls down. However, the sensitive degree of changing the
expiration time cannot be too small, which will cause a very
large number. So we manually define a lower bound T to
limit it. The annealing process ends when temperature drops
to minT. Foa’s increase means that all the services will have
more chances to be visited in the period than in other ones.
In this case, if the expiration time is seriously influenced by
hit_ratio, it might get a very large value like 1 day or fall to
a very small value like 0.1 s, both of which are unreason-
able for updating services. So we must increase temperature
to decline the influence of hit_ratio. On the contrary, if Foa
is too small, it might cost the system a long time to collect
enough information to adapt the expiration time to the best.
In this case, we must decrease temperature to add the influ-
ence of hit_ratio. In a word, temperature should be positively
affected by frequency of accessing.

5 Experimental evaluation

5.1 Example: online eStore

We implement a simple online eStore as our sample SORC
for the experiments. In the eStore, a user can browse
products’ information (title, description, price, and so on).
If the user finds a product interesting, he/she can put it into
his/her shopping cart. After adding item into shopping cart,
the user can choose to continue shopping or to check out. A
new order will be created when the user checks it out.

Figure 10 gives the data model diagram of the SORC. The
models of User, Prodcut, Order and OrderItem persist at the
server-side. The OrderItems associate an Order with Product
in it. The Cart (shopping cart) and CartItem are client-side
data models stored in the local storage. The SORC caches
User and Product to achieve better performance and user
experience.

5.2 Performances analysis of different data sources

First, we measure the CRUD operations’ performances of
different data sources in different browsers. Each opera-
tion manipulates one CartItem data object (24 bytes) and is
repeated one thousand times to make the final data distinct.
Figures 11, 12, 13 and 14 illustrate the experiments’ results.
The unit of Y axis is millisecond.

Above results illustrate the characteristics of heteroge-
neous client-side data sources:

Fig. 10 Data models of online eStore SORC
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Fig. 11 CRUD performances in IE8

Fig. 12 CRUD performances in Firefox 3.6

Fig. 13 CRUD performances in Chrome 5

• IE userData data source is the IE’s private local storage
solution. It is the only available data source in IE 7 or
lower. However, the performance of HTML5 data sources
is better than userData in IE 8;

• The performance of Flash LSO data source is very similar
in different browsers. The possible reason is that Flash
LSO is implemented by the unified plug-in and does not
relied on browsers’ built-in mechanism;

• The performance and size limit of HTML5 data sources
differ greatly in different Web browsers, since HTML5
specifications are still in the draft stage and browser

Fig. 14 CRUD performances in Safari 4

Fig. 15 Performance comparison of HTML5 in Safari desktop and
mobile

vendors implement HTML5 data sources according to
their own understanding. However, HTML5 data sources
have the best average performance in most modern
browsers;

• Google Gears data source has fast read and slow write
operations. The average performance of Google Gears
data source is worst in all client-side data sources. How-
ever, it is the only data source without storage size
limit. So it is suited to server large-scale data storage
requirements.

In the second experiment, we compare the performances
of the same local storage solution in desktop and mobile
browser. The experiment runs on Safari 4, which has both
desktop and iPhone version. In this test, each operation also
repeats one thousand times. The result is shown in Fig. 15.
Since Flash LSO is not supported by iPhone Safari, the Flash
LSO–related data are not displayed in the figure.

In iPhone Safari, HTML5 local storage is about one thou-
sand times slower than its desktop version, while HTML5
database is about two hundred times slower. Since the two
versions of Safari use the same browser core, called Web-
kit,16 the gap of performances should be mainly due to the

16 Webkit, http://webkit.org/.
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Fig. 16 Performance comparison of local data source and simulated
data source

performance difference between PC and mobile phone. How-
ever, if compared with other local storages in the desktop
browsers, such as Flash LSO and Google Gears, iPhone
HTML5 storage has much better performance. Since the
latest mobile browsers are mostly based on Webkit, we can
draw the conclusion that the local data sources in the latest
mobile browsers are usable well.

Finally, we also compare the performance of server-side
simulated data source with local data source. Figure 16 dis-
plays the comparison results between the simulated data
source with Google Gears data source, whose average per-
formance is the slowest.

The performance of simulated data source is much slower
than the slowest local data source. Such a big gap is due to
that each operation at the simulated data source performs
a remote invocation. The parameters marshaling and net-
work round-trip are extremely time-consuming actions. In
our experimental environment, the server and the SORC are
in the same LAN with low network latency. The performance
of simulated data source will be worse in production envi-
ronment. Accordingly, the simulated data source is only the

last resort—when none of the other client-side data sources
are available.

5.3 Evaluation of data sources selection

We evaluate the effect of our local storage selection approach
though a script, which simulates users’ actions and invocation
requests. We make the cache store data in the local storage
rather than the memory to obtain more local data access. In
this case, the eStore firstly writes large amount of data into
local storage since the cache is empty. When the hit ratio of
cache rises, the read operations will predominate. The dem-
onstration is run in Google Chrome 5 and Firefox 3.6.

Chrome 5 supports four local storage solutions: Flash
LSO, HTML 5 Local, HTML 5 Database and Google Gears,
while Firefox 3.6 supports: Flash LSO, HTML 5 Local and
Google Gears. We use the CRUD operations’ performance
and size limitation measured in the last section, refer Tables 4,
and 5.

Then, we perform the test in the three ways of assigning
the characteristics variable of the SORCs, as we mentioned
in Sect. 4.2. In the manual way, Sapp−max is assigned to 100 K
due to no need for mass local storage in this test. Both “read-
intensive” and “read-write-balancing (RW-balancing)” strat-
egies are put to the test—< Wc, Wr, Wu, Wd > is assigned
to < 0, 1, 0, 0 > in the former, while < 1, 1, 1, 1 > in the
latter – to find how different manual strategies affect the final
result.

Figures 17, 18, 19 and 20 illustrate the evaluation results.
The two left figures present the total data access processing
time with different selection strategies in the two browsers.
The right parts figure the time consumption of every 50 oper-
ations to display the change in performance.

The above results reveal the following observations:

• The eStore costs the longest time by default. The default
strategy has no idea about the size requirement of

Table 4 Performances and size
limits of different local storages
in Google Chrome 5

Read Insert (ms) Update (ms) Delete (ms) Size limit (K)

Flash LSO 0.70 2.87 3.37 3.30 100

HTML 5 Local 0.09 0.32 0.31 0.38 5,000

HTML 5 Database 0.001 0.002 0.002 0.002 5,000

Google Gears 0.001 101.96 93.80 78.00 No limit

Table 5 Performances and size
limits of different local storages
in Firefox 3.6

Read Insert (ms) Update (ms) Delete (ms) Size limit (K)

Flash LSO 2.45 4.99 6.50 9.15 100

HTML 5 Local 0.10 82.57 78.03 78.89 2500

Google Gears 0.003 67.80 96.14 78.65 No limit
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Fig. 17 Time consumption of different strategies in Chrome 5

Fig. 18 Time consumption of every 50 operations in Chrome 5

Fig. 19 Time consumption of different strategies in Firefox 3.6.3

application. The framework therefore always tends to
select Google Gears data source, which is the only cur-
rently known “infinite” local storage, to ensure that data
will not cause overflow. However, the write operations in
the Gears data source work extremely slowly. As the blue
lines show in Figs. 18 and 20, the time consumption of
operations is high at first due to frequent write operations,
and therefore increases the total processing time.

• With the manual strategies, the result is a bit complex.
Counts afterward demonstrated that the ratio between
read and write operations in the test is three to one.

Fig. 20 Time consumption of every 50 operations in Firefox 3.6.3

However, read-intensive strategy does not always select
the most suitable data source.

� In Google Chrome, both read-intensive and RW-
balancing strategies achieve great performances. It
is due to Chrome’s HTML5 database executing in
an independent background thread, and therefore
all CRUD operations run extremely fast. Accord-
ingly, no matter read-intensive or RW-balancing
strategy, HTML5 database is selected and then the
best performance is achieved.

� In Firefox, however, the read-intensive strategy takes
poor performance, similar to the default situation. But
the RW-balancing strategy achieves a better result.
The reason is that, although Gears data source occu-
pies 2 ms (millisecond) with each read operation, it
slow about 70–80 ms with each write (CUD) oper-
ation compared with Flash LSO. Therefore, even
though the read operations in the test is three times
more than write operations, the read-intensive strat-
egy, which selects Gears data source, is much slower
than RW-balancing strategy (Flash LSO).

The result above indicates that, due to the exact speed
differences among local storage solution, to find the most
proper data source, it is better to fine-grained assign <

Wc, Wr, Wu, Wd > based on the test results (e.g. < 0.7, 3,

0.01, 0.29) rather than coarse-grained “strategy”.

• The adaptive selection based on fine-gained sets <

Wc, Wr, Wu, Wd > value depend on historical data.

� In Chrome, HTML5 database is always selected,
since HTML5 database always works fastest no mat-
ter which kind of operation is in the majority. The
total time of adaptive selection is a bit longer than
manual strategies (also use HTML5 database). It is
probably due to the framework records each data
access operation. Each record action spends a very
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short time. However, the total time cost of all record
actions can be viewed in the final result.

� In Firefox, Flash LSO is selected at first, since it
has the best average performance. When cache hit
ratio rises, the read operations grow in number. In
this situation, Google Gears, which read faster, is
more suitable. The right blue bar in Fig. 19 illustrates
that the operations’ time consumption with the adap-
tive selection is shorter than RW-balancing strategy,
which only uses Flash LSO data source. Unfortu-
nately, the red part of right bar in Fig. 19 shows that
the cost of data source migration needs to delete all
data in the old source and insert them to the new one.
The cost makes the adaptive selection manner be even
slower than the default way.

The result using adaptive selection proves that data source
migration at runtime is not cost effective. However, the test
with manual strategies shows that the fine-grained assigned<

Wc, Wr, Wu, Wd > is necessary to find suitable data source.
Therefore, there is a more reasonable way for selecting data
source. First, the framework records each data access oper-
ation. But it does not change to the new data source when
an application is running. The data are migrated just before
the application closes, and the new data source is available
at next use.

The right blue bar in Fig. 21 illustrates that the total pro-
cessing time of re-run the test after re-selecting data source
before the SORC closed. This way neither depends on unreli-
able coarse-grained manual strategy nor affects the total time
consumption and user experience seriously.

5.4 Evaluation of basic data cache

The cache mechanisms evaluation is done by writing a script,
which simulates users’ actions and invokes requests on behalf
of a user. To better imitate the user behavior and to ponder
the validation, our script would pause 5 s between every two
requests. The demonstration is performed on Firefox 3.6.3.

Fig. 21 Time consumption of different strategies in Firefox 3.6.3

Fig. 22 Requests to remote servers comparison

Fig. 23 Hit ratio of cache of the framework

We record the outgoing requests versus the increase in
requests with and without the cache mechanism. It is worth
noting that the memory consumption of the cache mechanism
is dependent upon the data in application context other than
the cache mechanism, so it is not included in the evaluation.

The first evaluation is for the efficiency of our cache mech-
anism. In Fig. 22, the X axis refers to the total number of
requests sent by users, and the Y axis refers to the requests
that are actually processed by the servers. More requests are
replied from caches when the requests rise. The reason is
that both the cache and data response reuse the OT models of
shopping. The same cases happen in reality when users prefer
to quickly browsing all available providers while going back
and forth periodically. Moreover, if the strategy conducts the
validation less frequently, requests to servers would further
decrease.

The second evaluation is to check the performance of the
cache manager. In Fig. 23, the X axis takes the same meaning
as above. The Y axis refers to the number of hits. The above
results reveal the following observations.

• The hit rate starts highly for even small scale of requests.
This is due to the concrete behavior of the script and
the specific scope of this application. Since the descrip-
tions of the providers seldom change during a long period
of time, the cache mechanism incorporates obvious
improvement;

• The hit rate rises slightly as the size of requests increases,
while sliding down a bit around 32%. The increase in hit
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rate comes from the increase in available instances. The
decrease is caused by some instances that are out-of-time,
which would diminish the hit ratio by missing requests.

From the evaluation above, we demonstrate that the cache
manager has a sound performance in exerting the cache
strategies from developers, and under appropriate strategies
which balance the traffic and validity well, the corresponding
composite applications would benefit from the framework
without burdening too much on traffic.

5.5 Evaluation of adaptive cache

Besides the above evaluation, we have conducted an experi-
ment on the adaptive feature of the cache. Our purpose is to
find out how our algorithms in Sect. 4.3 change the expiration
time, so it would adapt to users’ behavior.

We let the SORC request only one dataset of the server-
side data source. There is another script requesting the data-
set on behalf of the users with irregular access frequencies
and different parameters (from a parameter collection that
is large enough). We have timed the process and recorded
the following factors: frequency of access (Foa), hit ratio
(hit times divided by total times), temperature and Vi. The
records have the unit of 10 times, and the time interval is
2 min (Figs. 24, 25).

Fig. 24 Hit ratio against time without adaptive cache

Fig. 25 Temperature against time

Fig. 26 Vi against time with adaptive cache

The first step of the experiment is done without the adap-
tive cache. We generate a series of requests (denoted as
R0). These requests are sent irregularly, which means the
frequency of invocations would change in some period of
time.

From Fig. 26, we could find out that there is a dramatic
decrease in hit ratio at Point A and also an increase at Point B.
The reason is around the period of A, users send too many
requests with different parameters, which lead to significant
cache miss. While in the period of Point B, users just send
identical requests which increase the hit ratio. As discussed
previously, our approach should alleviate the dramatic expi-
ration change at both Point A and B. We should also allow
expiration to change much more quickly around other time.

Then, we apply the adaptive method, send the exactly same
requests R0 in the same order and frequencies and obtain the
following data about temperature.

According to Formula 2, temperature is affected by Foa.
From the graph, we can observe that around the period of
A and B, temperature rises significantly due to the large
quantity of requests. According to Formula 1, since high-
frequency results in high temperature, which “slows down”
the process of “annealing”, we expect the Vi to drop smoothly
at the Point A and increase smoothly at Point B. At other
points, temperatures are rather low so Vi should change
quickly.

Finally, we check the resulting expiration time (which has
a linear conversion from Vi) from the impact of temperature.

From Fig. 26 and Formula 2, we are generally more con-
cerned over how Vi performs at A and B among all the dots.
The relatively small decline at A shows a desirable result,
which means our approach controls the expiration time to be
relatively stable when too many cache misses occur. In this
way, if we set up the threshold value of Va as level of A, the
framework could turn off the cache to reduce the unneces-
sary memory occupation. The same effect could be observed
on the smooth increase at Point B. On the other hand, the
fluctuation on the left segment of the curve shows our anneal-
ing algorithm changes the expiration time very quickly at a
lower temperature. This makes sense in the sense that the
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Fig. 27 Requests to remote servers comparison (2)

framework would find the desired expiration time quickly
without too much history data.

Consequently, we run the beginning eStore test script
again with the adaptive cache on. The comparison of the
requests is as shown in Fig. 27. From the experiment above,
we show that the adaptive cache and the annealing algo-
rithm suit some scenarios rather well. It guarantees the stable
changes in expiration time, and encourages quick adaption
at the inception of scenarios.

6 Discussion

In practice, there are many mature and powerful ORM func-
tions, such as inheritance mapping, object-oriented query
language (e.g. HQL) and so on. However, the SORCs are
still in early stage and do not have so powerful data models
yet. Our framework does not support these ORM functions
since they are yet not necessary for current SORCs. On the
other hand, since our framework should take non-SQL local
storages into consideration, it is hard or even impossible to
realize some of the powerful functions. The advanced topics
therefore are beyond the scope of this paper. So far, our frame-
work only adopts the simple ORM strategies. In our future
work, we will try to introduce more powerful ORM func-
tions and investigate how the functions affect the SORCs’
data access.

Currently, our local data sources selection approach only
considers the performance of CRUD operations. However,
the aggregate operations also have great influence on the
performance of local storages and further greatly affect the
data sources selection. For example, the SQL solutions, such
as Google Gears, support multi-conditions SQL queries. In
the non-SQL local storages, such inquiries have to be imple-
mented by consulting the whole table, which occupies more
time cost. Accordingly, considering the performance of the
aggregate operations, the SQL local storages can be more
feasible for some SORCs and some browsers.

Our cache mechanism is implemented on the client-side.
The use of our cache mechanism might be restricted for
server-side applications, since many developers compose

services on the server-side and provide the final Web pages
to users. To enable caching for these applications, the cache
mechanism should accommodate the server-side implemen-
tation. Since the mechanism and the runtime environment are
loosely coupled in our framework, it might not be a tough
task to realize such an environment.

There are several other important data access issues to
a data access framework, such as transaction, concurrency
control and so on. However, the client-side data sources
neither suffer from these issues nor support particular
advanced features to deal with them. For example, no local
storages support transaction until now, and they do not need
concurrency control since JavaScript always runs in a single
thread in a SORC. At the server-side, we find that most of
the issues are not quite different and can be partly handled
by existing server-side data access frameworks. Therefore,
within this paper, we do not discuss the problems. Such issues
may be more considered in our future work.

There are several types of SORCs, such as AJAX-based
SORCs, Flash-based SORCs, Silverlight-based SORCs and
so on. Our data access framework mainly targets at the
AJAX-based SORCs, since it is the most common and pop-
ular fashion. However, the different types of SORCs address
the same requirements and suffer from the same data access
issues as well. Furthermore, all types share the same appli-
cation structure or pattern. They are all implemented by the
structural markup language (AJAX-HTML, Flash-MXML,
Silverlight-XAML), the variant of ECMAScript (AJAX-
JavaScript, Flash-ActionScript, Silverlight-JavaScript) and
the CSS (Cascading Style Sheets). Accordingly, the func-
tions that can be realized are similar in the different types.
Therefore, we note that most of the mechanisms proposed in
this paper can be also extended for other types.

7 Related work

There have been some Web engineering research efforts
[9,10] paying attention to SORC data modeling. They pro-
vide a set of guidelines to help developers determine stor-
age locations (server-side or client-side) under specific con-
texts. Some of the works also offer client-side data modeling
approaches. The result data models can be transformed into
a part of final SORC automatically. However, most of cur-
rent works do not specify how the SORCs to access local
storages, and there is no sign that they concern the issues
of heterogeneous local storages and unsuitable HTTP cache
mechanism.

A number of AJAX-based SORC development frame-
works have emerged, such as ActiveJS,17 JavaScriptMVC18

17 ActiveJS, http://activerecordjs.org/.
18 JavaScriptMVC, http://javascriptmvc.com/.
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and SproutCore.19 These frameworks all provide “Model-
View-Controller templates” to developers. With the
templates, developers can build SORCs more easily and
quickly. The model part of the frameworks is responsible
of connecting the SORCs with the data sources. However,
until now, these development frameworks mainly focus on
how to rapidly generate data models based on existing Web-
delivered services, especially RESTful Web-delivered ser-
vices [20]. As a result, the MVC frameworks offer very few
facilities in addressing the issues mentioned in this paper.
However, since the frameworks adopt diverse data access pat-
terns, such as DAO (Data Access Object) and ActiveRecord,
they provide some valuable lessons in the patterns selection
and implementation of our framework.

The concept of semantic cache is proposed to reuse the
overlapped cache data with the help of the semantic knowl-
edge of the data [21]. The semantic cache focuses on how to
exploit the semantic information within the query and how
to use this information for the future reuse [22]. We believe
that semantic cache is a very desirable reference for our cache
mechanism. Because data models with semantics are similar
with result sets in semantic cache, and the algorithms for
classifying, reusing and replacing [23] could supplement our
relatively simple models. However, it is also worth noting
that semantics in datasets from Web-delivered services are
more variable and complex than the query-based responses
(usually expressed as name-value pair) of semantic cache.
Thus, our framework differs from traditional semantic cache
technologies.

Depending on the hierarchy differences, there are two
kinds of browser-side cache. The first one is to cache on the
data tier, such as the browsers’ built-in cache or cache mod-
ules in the browser add-ins (e.g. Runtime Shared Libraries
in Flash20). This sort of cache would map URLs to content
according to HTTP/1.1. A number of elements in the HTTP
HEADER are included to direct cache behaviors, which are
specified by service providers. The second kind resides on
the application tier, which are usually embedded in client-
side JavaScript frameworks [24]. Nevertheless, popular Java-
Script frameworks such as Dojo21 and DWR22only cache the
data on basis of the entire Web pages or responses, providing
inadequate flexibility for developers.

Many research works [12,13,25] focus on data access
between the application servers and the databases at the
server-side. There are also some server-side data access
frameworks, such as Hibernate, RoR ActiveRecord. These
works inspire us to provide a data access framework for

19 SproutCore, http://www.sproutcore.com/.
20 RSL, http://www.adobe.com/devnet/flex/articles/rsl.html.
21 Dojo, http://dojotoolkits.org.
22 DWR, http://directwebremoting.org/dwr/index.html.

SORCs. We also borrow lots of experiences from the works.
However, the SORCs have their own data access issues, such
as heterogonous data access clients, which have not consid-
ered in the server-side data access frameworks. The special
issues are the uppermost concern in our work.

8 Conclusion

Service-Oriented Rich Clients combine the benefits of the
Web distribution thin clients model with the highly inter-
active desktop clients. The SORCs provide the advantages
in terms of client-side data storage and manipulation. The
SORCs suffer from data access issues. In this paper, we pro-
pose a data access framework for SORCs. This paper makes
the following contributions: (1) an adapter for uniformly
accessing heterogeneous local storages and a local storage
selection technique; (2) a client-side cache customization
mechanism and an adaptive technique for cache strategies.

As we discussed in the Sect. 6, there are still some open
issues for the SORC data access framework. We will try to
support relationships among data models and provide more
powerful query languages in the future work.
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